10. Bounded Linear Functionals in L^2

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.

Definition 78 We call **subsequence** of a sequence $(x_n)_{n\geq 1}$, any sequence of the form $(x_{\phi(n)})_{n\geq 1}$ where $\phi: \mathbf{N}^* \to \mathbf{N}^*$ is a strictly increasing map.

EXERCISE 1. Let (E,d) be a metric space, with metric topology \mathcal{T} . Let $(x_n)_{n\geq 1}$ be a sequence in E. For all $n\geq 1$, let F_n be the closure of the set $\{x_k: k\geq n\}$.

1. Show that for all $x \in E$, $x_n \xrightarrow{\mathcal{T}} x$ is equivalent to:

$$\forall \epsilon > 0 , \exists n_0 \ge 1 , n \ge n_0 \Rightarrow d(x_n, x) \le \epsilon$$

- 2. Show that $(F_n)_{n\geq 1}$ is a decreasing sequence of closed sets in E.
- 3. Show that if $F_n \downarrow \emptyset$, then $(F_n^c)_{n \geq 1}$ is an open covering of E.

- 4. Show that if (E, \mathcal{T}) is compact then $\bigcap_{n=1}^{+\infty} F_n \neq \emptyset$.
- 5. Show that if (E, \mathcal{T}) is compact, there exists $x \in E$ such that for all $n \ge 1$ and $\epsilon > 0$, we have $B(x, \epsilon) \cap \{x_k, k \ge n\} \ne \emptyset$.
- 6. By induction, construct a subsequence $(x_{n_p})_{p\geq 1}$ of $(x_n)_{n\geq 1}$ such that $x_{n_p} \in B(x,1/p)$ for all $p\geq 1$.
- 7. Conclude that if (E, \mathcal{T}) is compact, any sequence $(x_n)_{n\geq 1}$ in E has a convergent subsequence.

EXERCISE 2. Let (E,d) be a metric space, with metric topology \mathcal{T} . We assume that any sequence $(x_n)_{n\geq 1}$ in E has a convergent subsequence. Let $(V_i)_{i\in I}$ be an open covering of E. For $x\in E$, let:

$$r(x) \stackrel{\triangle}{=} \sup\{r > 0 : B(x,r) \subseteq V_i, \text{ for some } i \in I\}$$

1. Show that $\forall x \in E, \exists i \in I, \exists r > 0$, such that $B(x,r) \subseteq V_i$.

2. Show that $\forall x \in E, r(x) > 0$.

EXERCISE 3. Further to ex. (2), suppose $\inf_{x \in E} r(x) = 0$.

- 1. Show that for all $n \ge 1$, there is $x_n \in E$ such that $r(x_n) < 1/n$.
- 2. Extract a subsequence $(x_{n_k})_{k\geq 1}$ of $(x_n)_{n\geq 1}$ converging to some $x^*\in E$. Let $r^*>0$ and $i\in I$ be such that $B(x^*,r^*)\subseteq V_i$. Show that we can find some $k_0\geq 1$, such that $d(x^*,x_{n_{k_0}})< r^*/2$ and $r(x_{n_{k_0}})\leq r^*/4$.
- 3. Show that $d(x^*, x_{n_{k_0}}) < r^*/2$ implies that $B(x_{n_{k_0}}, r^*/2) \subseteq V_i$. Show that this contradicts $r(x_{n_{k_0}}) \le r^*/4$, and conclude that $\inf_{x \in E} r(x) > 0$.

EXERCISE 4. Further to ex. (3), Let r_0 with $0 < r_0 < \inf_{x \in E} r(x)$. Suppose that E cannot be covered by a finite number of open balls with radius r_0 .

- 1. Show the existence of a sequence $(x_n)_{n\geq 1}$ in E, such that for all $n\geq 1, x_{n+1}\notin B(x_1,r_0)\cup\ldots\cup B(x_n,r_0)$.
- 2. Show that for all n > m we have $d(x_n, x_m) \ge r_0$.
- 3. Show that $(x_n)_{n\geq 1}$ cannot have a convergent subsequence.
- 4. Conclude that there exists a finite subset $\{x_1, \ldots, x_n\}$ of E such that $E = B(x_1, r_0) \cup \ldots \cup B(x_n, r_0)$.
- 5. Show that for all $x \in E$, we have $B(x, r_0) \subseteq V_i$ for some $i \in I$.
- 6. Conclude that (E, \mathcal{T}) is compact.
- 7. Prove the following:

Theorem 47 A metrizable topological space (E, \mathcal{T}) is compact, if and only if for every sequence $(x_n)_{n\geq 1}$ in E, there exists a subsequence $(x_{n_k})_{k\geq 1}$ of $(x_n)_{n\geq 1}$ and some $x\in E$, such that $x_{n_k}\stackrel{\mathcal{T}}{\to} x$.

EXERCISE 5. Let $a, b \in \mathbf{R}$, a < b and $(x_n)_{n \ge 1}$ be a sequence in]a, b[.

- 1. Show that $(x_n)_{n\geq 1}$ has a convergent subsequence.
- 2. Can we conclude that a, b is a compact subset of \mathbf{R} ?

EXERCISE 6. Let $E = [-M, M] \times ... \times [-M, M] \subseteq \mathbf{R}^n$, where $n \ge 1$ and $M \in \mathbf{R}^+$. Let $\mathcal{T}_{\mathbf{R}^n}$ be the usual product topology on \mathbf{R}^n , and $\mathcal{T}_E = (\mathcal{T}_{\mathbf{R}^n})_{|E}$ be the induced topology on E.

- 1. Let $(x_p)_{p\geq 1}$ be a sequence in E. Let $x\in E$. Show that $x_p\overset{T_E}{\to} x$ is equivalent to $x_p\overset{T_{\mathbf{R}^n}}{\to} x$.
- 2. Propose a metric on \mathbb{R}^n , inducing the topology $\mathcal{T}_{\mathbb{R}^n}$.
- 3. Let $(x_p)_{p\geq 1}$ be a sequence in \mathbf{R}^n . Let $x\in \mathbf{R}^n$. Show that $x_p \xrightarrow{T_{\mathbf{R}^n}} x$ if and only if, $x_p^i \xrightarrow{T_{\mathbf{R}}} x^i$ for all $i\in \mathbf{N}_n$.

EXERCISE 7. Further to ex. (6), suppose $(x_p)_{p\geq 1}$ is a sequence in E.

- 1. Show the existence of a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, such that $x^1_{\phi(p)} \stackrel{\mathcal{T}_{[-M,M]}}{\to} x^1$ for some $x^1 \in [-M,M]$.
- 2. Explain why the above convergence is equivalent to $x_{\phi(p)}^1 \stackrel{T_{\mathbf{R}}}{\to} x^1$.
- 3. Suppose that $1 \le k \le n-1$ and $(y_p)_{p\ge 1} = (x_{\phi(p)})_{p\ge 1}$ is a subsequence of $(x_p)_{p\ge 1}$ such that:

$$\forall j = 1, \dots, k , \ x_{\phi(p)}^j \stackrel{T_{\mathbf{R}}}{\to} x^j \text{ for some } x^j \in [-M, M]$$

Show the existence of a subsequence $(y_{\psi(p)})_{p\geq 1}$ of $(y_p)_{p\geq 1}$ such that $y_{\psi(p)}^{k+1} \stackrel{T_{\mathbf{R}}}{\longrightarrow} x^{k+1}$ for some $x^{k+1} \in [-M, M]$.

4. Show that $\phi \circ \psi : \mathbf{N}^* \to \mathbf{N}^*$ is strictly increasing.

5. Show that $(x_{\phi \circ \psi(p)})_{p \geq 1}$ is a subsequence of $(x_p)_{p \geq 1}$ such that:

$$\forall j = 1, \dots, k+1 , x_{\phi \circ \psi(n)}^j \xrightarrow{T_{\mathbf{R}}} x^j \in [-M, M]$$

- 6. Show the existence of a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, and $x\in E$, such that $x_{\phi(p)}\stackrel{\mathcal{T}_E}{\to} x$
- 7. Show that (E, \mathcal{T}_E) is a compact topological space.

EXERCISE 8. Let A be a closed subset of \mathbb{R}^n , $n \geq 1$, which is bounded with respect to the usual metric of \mathbb{R}^n .

- 1. Show that $A\subseteq E=[-M,M]\times\ldots\times[-M,M],$ for some $M\in\mathbf{R}^+.$
- 2. Show from $E \setminus A = E \cap A^c$ that A is closed in E.
- 3. Show $(A, (\mathcal{T}_{\mathbf{R}^n})_{|A})$ is a compact topological space.

4. Conversely, let A is a compact subset of \mathbb{R}^n . Show that A is closed and bounded.

Theorem 48 A subset of \mathbb{R}^n is compact if and only if it is closed and bounded with respect to its usual metric.

EXERCISE 9. Let $n \ge 1$. Consider the map:

$$\phi: \left\{ \begin{array}{ccc} \mathbf{C}^n & \to & \mathbf{R}^{2n} \\ (a_1 + ib_1, \dots, a_n + ib_n) & \to & (a_1, b_1, \dots, a_n, b_n) \end{array} \right.$$

- 1. Recall the expressions of the usual metrics $d_{\mathbf{C}^n}$ and $d_{\mathbf{R}^{2n}}$ of \mathbf{C}^n and \mathbf{R}^{2n} respectively.
- 2. Show that for all $z, z' \in \mathbb{C}^n$, $d_{\mathbb{C}^n}(z, z') = d_{\mathbb{R}^{2n}}(\phi(z), \phi(z'))$.
- 3. Show that ϕ is a homeomorphism from \mathbb{C}^n to \mathbb{R}^{2n} .

- 4. Show that a subset K of \mathbb{C}^n is compact, if and only if $\phi(K)$ is a compact subset of \mathbb{R}^{2n} .
- 5. Show that K is closed, if and only if $\phi(K)$ is closed.
- 6. Show that K is bounded, if and only if $\phi(K)$ is bounded.
- 7. Show that a subset K of \mathbb{C}^n is compact, if and only if it is closed and bounded with respect to its usual metric.

Definition 79 Let (E,d) be a metric space. A sequence $(x_n)_{n\geq 1}$ in E is said to be a Cauchy sequence with respect to the metric d, if and only if for all $\epsilon > 0$, there exists $n_0 \geq 1$ such that:

$$n, m \ge n_0 \implies d(x_n, x_m) \le \epsilon$$

Definition 80 We say that a metric space (E,d) is **complete**, if and only if for any Cauchy sequence $(x_n)_{n\geq 1}$ in E, there exists $x\in E$ such that $(x_n)_{n\geq 1}$ converges to x.

Exercise 10.

- 1. Explain why strictly speaking, given $p \in [1, +\infty]$, definition (77) of Cauchy sequences in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not a covered by definition (79).
- 2. Explain why $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not a complete metric space, despite theorem (46) and definition (80).

EXERCISE 11. Let $(z_k)_{k\geq 1}$ be a Cauchy sequence in \mathbb{C}^n , $n\geq 1$, with respect to the usual metric $d(z,z')=\|z-z'\|$, where:

$$||z|| \stackrel{\triangle}{=} \sqrt{\sum_{i=1}^{n} |z_i|^2}$$

1. Show that the sequence $(z_k)_{k\geq 1}$ is bounded, i.e. that there exists $M\in \mathbf{R}^+$ such that $||z_k||\leq M$, for all $k\geq 1$.

- 2. Define $B = \{z \in \mathbf{C}^n , \|z\| \le M\}$. Show that $\delta(B) < +\infty$, and that B is closed in \mathbf{C}^n .
- 3. Show the existence of a subsequence $(z_{k_p})_{p\geq 1}$ of $(z_k)_{k\geq 1}$ such that $z_k \stackrel{T_{\mathbb{C}^n}}{\to} z$ for some $z \in B$.
- 4. Show that for all $\epsilon > 0$, there exists $p_0 \geq 1$ and $n_0 \geq 1$ such that $d(z, z_{k_{n_0}}) \leq \epsilon/2$ and:

$$k \geq n_0 \Rightarrow d(z_k, z_{k_{n_0}}) \leq \epsilon/2$$

- 5. Show that $z_k \stackrel{\mathcal{T}_{\mathbf{C}^n}}{\to} z$.
- 6. Conclude that \mathbb{C}^n is complete with respect to its usual metric.
- 7. For which theorem of Tutorial 9 was the completeness of C used?

EXERCISE 12. Let $(x_k)_{k\geq 1}$ be a sequence in \mathbb{R}^n such that $x_k \stackrel{\mathcal{I}_{\mathbb{C}^n}}{\to} z$, for some $z \in \mathbb{C}^n$.

- 1. Show that $z \in \mathbf{R}^n$.
- 2. Show that \mathbf{R}^n is complete with respect to its usual metric.

Theorem 49 \mathbb{C}^n and \mathbb{R}^n are complete w.r. to their usual metrics.

EXERCISE 13. Let (E,d) be a metric space, with metric topology \mathcal{T} . Let $F\subseteq E,$ and \bar{F} denote the closure of F.

- 1. Explain why, for all $x \in \bar{F}$ and $n \ge 1$, we have $F \cap B(x, 1/n) \ne \emptyset$.
- 2. Show that for all $x \in \overline{F}$, there exists a sequence $(x_n)_{n \geq 1}$ in F, such that $x_n \xrightarrow{\mathcal{T}} x$.
- 3. Show conversely that if there is a sequence $(x_n)_{n\geq 1}$ in F with $x_n \xrightarrow{\mathcal{T}} x$, then $x \in \bar{F}$.

- 4. Show that F is closed if and only if for all sequence $(x_n)_{n\geq 1}$ in F such that $x_n \stackrel{\mathcal{T}}{\to} x$ for some $x \in E$, we have $x \in F$.
- 5. Explain why $(F, \mathcal{T}_{|F})$ is metrizable.
- 6. Show that if F is complete with respect to the metric $d_{|F \times F}$, then F is closed in E.
- 7. Let $d_{\bar{\mathbf{R}}}$ be a metric on $\bar{\mathbf{R}}$, inducing the usual topology $\mathcal{T}_{\bar{\mathbf{R}}}$. Show that $d' = (d_{\bar{\mathbf{R}}})_{|\mathbf{R} \times \mathbf{R}}$ is a metric on \mathbf{R} , inducing the topology $\mathcal{T}_{\mathbf{R}}$.
- 8. Find a metric on [-1, 1] which induces its usual topology.
- 9. Show that $\{-1, 1\}$ is not open in [-1, 1].
- 10. Show that $\{-\infty, +\infty\}$ is not open in $\bar{\mathbf{R}}$.
- 11. Show that \mathbf{R} is not closed in \mathbf{R} .
- 12. Let $d_{\mathbf{R}}$ be the usual metric of \mathbf{R} . Show that $d' = (d_{\bar{\mathbf{R}}})_{|\mathbf{R} \times \mathbf{R}}$ and $d_{\mathbf{R}}$ induce the same topology on \mathbf{R} , but that however, \mathbf{R}

is complete with respect to $d_{\mathbf{R}}$, whereas it cannot be complete with respect to d'.

Definition 81 Let \mathcal{H} be a **K**-vector space, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . We call **inner-product** on \mathcal{H} , any map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbf{K}$ with the following properties:

(i)
$$\forall x, y \in \mathcal{H} , \langle x, y \rangle = \overline{\langle y, x \rangle}$$

(ii)
$$\forall x, y, z \in \mathcal{H}$$
, $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$

(iii)
$$\forall x, y \in \mathcal{H}, \forall \alpha \in \mathbf{K}, \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

$$(iv)$$
 $\forall x \in \mathcal{H}, \langle x, x \rangle \geq 0$

(v)
$$\forall x \in \mathcal{H}, (\langle x, x \rangle = 0 \iff x = 0)$$

where for all $z \in \mathbb{C}$, \bar{z} denotes the complex conjugate of z. For all $x \in \mathcal{H}$, we call **norm** of x, denoted ||x||, the number defined by:

$$||x|| \stackrel{\triangle}{=} \sqrt{\langle x, x \rangle}$$

EXERCISE 14. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a **K**-vector space \mathcal{H} .

- 1. Show that for all $y \in \mathcal{H}$, the map $x \to \langle x, y \rangle$ is linear.
- 2. Show that for all $x \in \mathcal{H}$, the map $y \to \langle x, y \rangle$ is linear if $\mathbf{K} = \mathbf{R}$, and conjugate-linear if $\mathbf{K} = \mathbf{C}$.

EXERCISE 15. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a **K**-vector space \mathcal{H} . Let $x, y \in \mathcal{H}$. Let $A = ||x||^2$, $B = |\langle x, y \rangle|$ and $C = ||y||^2$. let $\alpha \in \mathbf{K}$ be such that $|\alpha| = 1$ and:

$$B = \alpha \overline{\langle x, y \rangle}$$

- 1. Show that $A, B, C \in \mathbf{R}^+$.
- 2. For all $t \in \mathbf{R}$, show that $\langle x t\alpha y, x t\alpha y \rangle = A 2tB + t^2C$.
- 3. Show that if C = 0 then $B^2 \leq AC$.

- 4. Suppose that $C \neq 0$. Show that $P(t) = A 2tB + t^2C$ has a minimal value which is in \mathbb{R}^+ , and conclude that $B^2 \leq AC$.
- 5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz's inequality:second) Let \mathcal{H} be a K-vector space, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} , and $\langle \cdot, \cdot \rangle$ be an inner-product on \mathcal{H} . Then, for all $x, y \in \mathcal{H}$, we have:

$$|\langle x, y \rangle| \le ||x|| . ||y||$$

EXERCISE 16. For all $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we define:

$$\langle f, g \rangle \stackrel{\triangle}{=} \int_{\Omega} f \bar{g} d\mu$$

1. Use the first Cauchy-Schwarz inequality (42) to prove that for all $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we have $f\bar{g} \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Conclude that $\langle f, g \rangle$ is a well-defined complex number.

- 2. Show that for all $f \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we have $||f||_2 = \sqrt{\langle f, f \rangle}$.
- 3. Make another use of the first Cauchy-Schwarz inequality to show that for all $f,g\in L^2_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$, we have:

$$|\langle f, g \rangle| \le ||f||_2 \cdot ||g||_2 \tag{1}$$

- 4. Go through definition (81), and indicate which of the properties (i) (v) fails to be satisfied by $\langle \cdot, \cdot \rangle$. Conclude that $\langle \cdot, \cdot \rangle$ is not an inner-product on $L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, and therefore that inequality (*) is not a particular case of the second Cauchy-Schwarz inequality (50).
- 5. Let $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. By considering $\int (|f| + t|g|)^2 d\mu$ for $t \in \mathbf{R}$, imitate the proof of the second Cauchy-Schwarz inequality to show that:

$$\int_{\Omega} |fg| d\mu \le \left(\int_{\Omega} |f|^2 d\mu \right)^{\frac{1}{2}} \left(\int_{\Omega} |g|^2 d\mu \right)^{\frac{1}{2}}$$

6. Let $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$ non-negative and measurable. Show that if $\int f^2 d\mu$ and $\int g^2 d\mu$ are finite, then f and g are μ -almost surely equal to elements of $L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Deduce from 5. a new proof of the first Cauchy-Schwarz inequality:

$$\int_{\Omega} f g d\mu \le \left(\int_{\Omega} f^2 d\mu\right)^{\frac{1}{2}} \left(\int_{\Omega} g^2 d\mu\right)^{\frac{1}{2}}$$

EXERCISE 17. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a **K**-vector space \mathcal{H} .

1. Show that for all $x, y \in \mathcal{H}$, we have:

$$||x + y||^2 = ||x||^2 + ||y||^2 + \langle x, y \rangle + \overline{\langle x, y \rangle}$$

2. Using the second Cauchy-Schwarz inequality (50), show that:

$$||x + y|| \le ||x|| + ||y||$$

3. Show that $d_{\langle ... \rangle}(x,y) = ||x-y||$ defines a metric on \mathcal{H} .

Definition 82 Let \mathcal{H} be a **K**-vector space, where **K** = **R** or **C**, and $\langle \cdot, \cdot \rangle$ be an inner-product on \mathcal{H} . We call **norm topology** on \mathcal{H} , denoted $\mathcal{T}_{\langle \cdot, \cdot \rangle}$, the metric topology associated with $d_{\langle \cdot, \cdot \rangle}(x, y) = ||x-y||$.

Definition 83 We call **Hilbert space** over **K** where **K** = **R** or **C**, any ordered pair $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ where $\langle \cdot, \cdot \rangle$ is an inner-product on a **K**-vector space \mathcal{H} , which is complete w.r. to $d_{\langle \cdot, \cdot \rangle}(x, y) = ||x - y||$.

EXERCISE 18. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K** and let \mathcal{M} be a closed linear subspace of \mathcal{H} , (closed with respect to the norm topology $\mathcal{T}_{\langle \cdot, \cdot \rangle}$). Define $[\cdot, \cdot] = \langle \cdot, \cdot \rangle_{|\mathcal{M} \times \mathcal{M}}$.

- 1. Show that $[\cdot, \cdot]$ is an inner-product on the **K**-vector space \mathcal{M} .
- 2. With obvious notations, show that $d_{[\cdot,\cdot]} = (d_{\langle\cdot,\cdot\rangle})_{|\mathcal{M}\times\mathcal{M}}$.
- 3. Deduce that $\mathcal{T}_{[\cdot,\cdot]} = (\mathcal{T}_{\langle\cdot,\cdot\rangle})_{|\mathcal{M}}$.

EXERCISE 19. Further to ex. (18), Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in \mathcal{M} , with respect to the metric $d_{[\cdot,\cdot]}$.

- 1. Show that $(x_n)_{n\geq 1}$ is a Cauchy sequence in \mathcal{H} .
- 2. Explain why there exists $x \in \mathcal{H}$ such that $x_n \stackrel{\mathcal{T}_{\langle \cdot, \cdot \rangle}}{\longrightarrow} x$.
- 3. Explain why $x \in \mathcal{M}$.
- 4. Explain why we also have $x_n \stackrel{\mathcal{T}_{[\cdot,\cdot]}}{\longrightarrow} x$.
- 5. Explain why $(\mathcal{M}, \langle \cdot, \cdot \rangle_{|\mathcal{M} \times \mathcal{M}})$ is a Hilbert space over \mathbf{K} .

EXERCISE 20. For all $z, z' \in \mathbb{C}^n$, $n \ge 1$, we define:

$$\langle z, z' \rangle \stackrel{\triangle}{=} \sum_{i=1}^{n} z_i \bar{z_i}'$$

- 1. Show that $\langle \cdot, \cdot \rangle$ is an inner-product on \mathbb{C}^n .
- 2. Show that the metric $d_{\langle \cdot, \cdot \rangle}$ is equal to the usual metric of \mathbb{C}^n .
- 3. Conclude that $(\mathbf{C}^n, \langle \cdot, \cdot \rangle)$ is a Hilbert space over \mathbf{C} .
- 4. Show that \mathbf{R}^n is a closed subset of \mathbf{C}^n .
- 5. Show however that \mathbf{R}^n is not a linear subspace of \mathbf{C}^n .
- 6. Show that $(\mathbf{R}^n, \langle \cdot, \cdot \rangle_{|\mathbf{R}^n \times \mathbf{R}^n})$ is a Hilbert space over \mathbf{R} .

Definition 84 We call usual inner-product in \mathbb{K}^n , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , the inner-product denoted $\langle \cdot, \cdot \rangle$ and defined by:

$$\forall x, y \in \mathbf{K}^n \ , \ \langle x, y \rangle = \sum_{i=1}^n x_i \bar{y_i}$$

Theorem 51 \mathbb{C}^n and \mathbb{R}^n together with their usual inner-products, are Hilbert spaces over \mathbb{C} and \mathbb{R} respectively.

Definition 85 Let \mathcal{H} be a **K**-vector space, where **K** = **R** or **C**. Let $\mathcal{C} \subseteq \mathcal{H}$. We say that \mathcal{C} is a **convex subset** or \mathcal{H} , if and only if, for all $x, y \in \mathcal{C}$ and $t \in [0, 1]$, we have $tx + (1 - t)y \in \mathcal{C}$.

EXERCISE 21. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K**. Let $\mathcal{C} \subseteq \mathcal{H}$ be a non-empty closed convex subset of \mathcal{H} . Let $x_0 \in \mathcal{H}$. Define:

$$\delta_{\min} \stackrel{\triangle}{=} \inf\{\|x - x_0\| : x \in \mathcal{C}\}$$

- 1. Show the existence of a sequence $(x_n)_{n\geq 1}$ in \mathcal{C} such that $||x_n-x_0||\to \delta_{\min}$.
- 2. Show that for all $x, y \in \mathcal{H}$, we have:

$$||x - y||^2 = 2||x||^2 + 2||y||^2 - 4\left|\left|\frac{x + y}{2}\right|\right|^2$$

3. Explain why for all $n, m \ge 1$, we have:

$$\delta_{\min} \le \left\| \frac{x_n + x_m}{2} - x_0 \right\|$$

4. Show that for all $n, m \geq 1$, we have:

$$||x_n - x_m||^2 \le 2||x_n - x_0||^2 + 2||x_m - x_0||^2 - 4\delta_{\min}^2$$

- 5. Show the existence of some $x^* \in \mathcal{H}$, such that $x_n \stackrel{\mathcal{T}_{\langle \cdot, \cdot \rangle}}{\longrightarrow} x^*$.
- 6. Explain why $x^* \in \mathcal{C}$
- 7. Show that for all $x, y \in \mathcal{H}$, we have $| \|x\| \|y\| | \le \|x y\|$.
- 8. Show that $||x_n x_0|| \to ||x^* x_0||$.
- 9. Conclude that we have found $x^* \in \mathcal{C}$ such that:

$$||x^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{C}\}$$

10. Let y^* be another element of \mathcal{C} with such property. Show that:

$$||x^* - y^*||^2 \le 2||x^* - x_0||^2 + 2||y^* - x_0||^2 - 4\delta_{\min}^2$$

11. Conclude that $x^* = y^*$.

Theorem 52 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let \mathcal{C} be a non-empty, closed and convex subset of \mathcal{H} . For all $x_0 \in \mathcal{H}$, there exists a unique $x^* \in \mathcal{C}$ such that:

$$||x^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{C}\}$$

Definition 86 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let $\mathcal{G} \subseteq \mathcal{H}$. We call **orthogonal** of \mathcal{G} , the subset of \mathcal{H} denoted \mathcal{G}^{\perp} and defined by:

$$\mathcal{G}^{\perp} \stackrel{\triangle}{=} \left\{ x \in \mathcal{H} : \langle x, y \rangle = 0 , \forall y \in \mathcal{G} \right\}$$

EXERCISE 22. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K** and $\mathcal{G} \subseteq \mathcal{H}$.

- 1. Show that \mathcal{G}^{\perp} is a linear subspace of \mathcal{H} , even if \mathcal{G} isn't.
- 2. Show that $\phi_y : \mathcal{H} \to K$ defined by $\phi_y(x) = \langle x, y \rangle$ is continuous.
- 3. Show that $\mathcal{G}^{\perp} = \bigcap_{y \in \mathcal{G}} \phi_y^{-1}(\{0\}).$
- 4. Show that \mathcal{G}^{\perp} is a closed subset of \mathcal{H} , even if \mathcal{G} isn't.
- 5. Show that $\emptyset^{\perp} = \{0\}^{\perp} = \mathcal{H}$.
- 6. Show that $\mathcal{H}^{\perp} = \{0\}.$

EXERCISE 23. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K**. Let \mathcal{M} be a closed linear subspace of \mathcal{H} , and $x_0 \in \mathcal{H}$.

1. Explain why there exists $x^* \in \mathcal{M}$ such that:

$$||x^* - x_0|| = \inf\{ ||x - x_0|| : x \in \mathcal{M} \}$$

2. Define $y^* = x_0 - x^* \in \mathcal{H}$. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$:

$$||y^*||^2 \le ||y^* - \alpha y||^2$$

3. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, we have:

$$0 \le -\alpha \langle y, y^* \rangle - \overline{\alpha \langle y, y^* \rangle} + |\alpha|^2 . ||y||^2$$

4. For all $y \in \mathcal{M} \setminus \{0\}$, taking $\alpha = \overline{\langle y, y^* \rangle} / \|y\|^2$, show that:

$$0 \le -\frac{|\langle y, y^* \rangle|^2}{\|y\|^2}$$

- 5. Conclude that $x^* \in \mathcal{M}, y^* \in \mathcal{M}^{\perp}$ and $x_0 = x^* + y^*$.
- 6. Show that $\mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$
- 7. Show that $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$ with $x_0 = x^* + y^*$, are unique.

Theorem 53 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let \mathcal{M} be a closed linear subspace of \mathcal{H} . Then, for all $x_0 \in \mathcal{H}$, there is a unique decomposition:

$$x_0 = x^* + y^*$$

where $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$.

Definition 87 Let \mathcal{H} be a **K**-vector space, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . We call **linear functional**, any map $\lambda : \mathcal{H} \to \mathbf{K}$, such that for all $x, y \in \mathcal{H}$ and $\alpha \in \mathbf{K}$:

$$\lambda(x + \alpha y) = \lambda(x) + \alpha \lambda(y)$$

EXERCISE 24. Let λ be a linear functional on a K-Hilbert¹ space \mathcal{H} .

1. Suppose that λ is continuous at some point $x_0 \in \mathcal{H}$. Show the existence of $\eta > 0$ such that:

$$\forall x \in \mathcal{H}, \|x - x_0\| \le \eta \Rightarrow |\lambda(x) - \lambda(x_0)| \le 1$$

¹Norm vector spaces are introduced later in these tutorials.

Show that for all $x \in \mathcal{H}$ with $x \neq 0$, we have $|\lambda(\eta x/||x||)| \leq 1$.

2. Show that if λ is continuous at x_0 , there exits $M \in \mathbb{R}^+$, with:

$$\forall x \in \mathcal{H} \ , \ |\lambda(x)| \le M||x|| \tag{2}$$

3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert² space over $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let λ be a linear functional on \mathcal{H} . Then, the following are equivalent:

(i)
$$\lambda: (\mathcal{H}, \mathcal{T}_{\langle \cdot, \cdot \rangle}) \to (K, \mathcal{T}_{\mathbf{K}})$$
 is continuous

(ii)
$$\exists M \in \mathbf{R}^+, \ \forall x \in \mathcal{H}, \ |\lambda(x)| \leq M.||x||$$

In which case, we say that λ is a bounded linear functional.

 $^{^2}$ Norm vector spaces are introduced later in these tutorials.

EXERCISE 25. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K**. Let λ be a bounded linear functional on \mathcal{H} , such that $\lambda(x) \neq 0$ for some $x \in \mathcal{H}$, and define $\mathcal{M} = \lambda^{-1}(\{0\})$.

- 1. Show the existence of $x_0 \in \mathcal{H}$, such that $x_0 \notin \mathcal{M}$.
- 2. Show the existence of $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$ with $x_0 = x^* + y^*$.
- 3. Deduce the existence of some $z \in \mathcal{M}^{\perp}$ such that ||z|| = 1.
- 4. Show that for all $\alpha \in \mathbf{K} \setminus \{0\}$ and $x \in \mathcal{H}$, we have:

$$\frac{\lambda(x)}{\bar{\alpha}}\langle z, \alpha z \rangle = \lambda(x)$$

5. Show that in order to have:

$$\forall x \in \mathcal{H} , \ \lambda(x) = \langle x, \alpha z \rangle$$

it is sufficient to choose $\alpha \in \mathbf{K} \setminus \{0\}$ such that:

$$\forall x \in \mathcal{H} , \frac{\lambda(x)z}{\bar{\alpha}} - x \in \mathcal{M}$$

6. Show the existence of $y \in \mathcal{H}$ such that:

$$\forall x \in \mathcal{H} , \ \lambda(x) = \langle x, y \rangle$$

7. Show the uniqueness of such $y \in \mathcal{H}$.

Theorem 54 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let λ be a bounded linear functional on \mathcal{H} . Then, there exists a unique $y \in \mathcal{H}$ such that: $\forall x \in \mathcal{H}$, $\lambda(x) = \langle x, y \rangle$.

Definition 89 Let $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . We call K-vector space, any set \mathcal{H} , together with operators \oplus and \otimes for which there exits an element $0_{\mathcal{H}} \in \mathcal{H}$ such that for all $x, y, z \in \mathcal{H}$ and $\alpha, \beta \in \mathbf{K}$, we have:

(i)
$$0_{\mathcal{H}} \oplus x = x$$

(ii)
$$\exists (-x) \in \mathcal{H} , (-x) \oplus x = 0_{\mathcal{H}}$$

$$(iii) x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

$$(iv) x \oplus y = y \oplus x$$

$$(v) 1 \otimes x = x$$

$$(vi) \alpha \otimes (\beta \otimes x) = (\alpha \beta) \otimes x$$

$$(vii) (\alpha + \beta) \otimes x = (\alpha \otimes x) \oplus (\beta \otimes x)$$

$$(viii) \alpha \otimes (x \oplus y) = (\alpha \otimes x) \oplus (\alpha \otimes y)$$

EXERCISE 26. For all $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, define:

$$\mathcal{H} \stackrel{\triangle}{=} \{ [f] : f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \}$$

where $[f] = \{g \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) : g = f, \mu\text{-a.s.}\}$. Let $0_{\mathcal{H}} = [0]$, and for all $[f], [g] \in \mathcal{H}$, and $\alpha \in \mathbf{K}$, we define:

$$[f] \oplus [g] \stackrel{\triangle}{=} [f+g]$$

 $\alpha \otimes [f] \stackrel{\triangle}{=} [\alpha f]$

We assume f, f', g and g' are elements of $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

- 1. Show that for f = g μ -a.s. is equivalent to [f] = [g].
- 2. Show that if [f] = [f'] and [g] = [g'], then [f + g] = [f' + g'].
- 3. Conclude that \oplus is well-defined.
- 4. Show that \otimes is also well-defined.
- 5. Show that $(\mathcal{H}, \oplus, \otimes)$ is a **K**-vector space.

EXERCISE 27. Further to ex. (26), we define for all $[f], [g] \in \mathcal{H}$:

$$\langle [f], [g] \rangle_{\mathcal{H}} \stackrel{\triangle}{=} \int_{\Omega} f \bar{g} d\mu$$

- 1. Show that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is well-defined.
- 2. Show that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner-product on \mathcal{H} .
- 3. Show that $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is a Hilbert space over \mathbf{K} .

4. Why is $\langle f, g \rangle \stackrel{\triangle}{=} \int_{\Omega} f \bar{g} d\mu$ not an inner-product on $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$?

EXERCISE 28. Further to ex. (27), Let $\lambda : L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \to \mathbf{K}$ be a continuous linear functional³. Define $\Lambda : \mathcal{H} \to \mathbf{K}$ by $\Lambda([f]) = \lambda(f)$.

1. Show the existence of $M \in \mathbf{R}^+$ such that:

$$\forall f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) , |\lambda(f)| \leq M.||f||_2$$

- 2. Show that if [f] = [g] then $\lambda(f) = \lambda(g)$.
- 3. Show that Λ is a well defined bounded linear functional on \mathcal{H} .
- 4. Conclude with the following:

 $^{^3}$ As defined in these tutorials, $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ is not a Hilbert space (not even a norm vector space). However, both $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ and \mathbf{K} have natural topologies and it is therefore meaningful to speak of *continuous linear functional*. Note however that we are slightly outside the framework of definition (88).

Theorem 55 Let $\lambda: L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \to \mathbf{K}$ be a continuous linear functional, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . There exists $g \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ such that:

$$\forall f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \ , \ \lambda(f) = \int_{\Omega} f \bar{g} d\mu$$