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10. Bounded Linear Functionals in L2

In the following, (Ω,F , μ) is a measure space.

Definition 78 We call subsequence of a sequence (xn)n≥1, any
sequence of the form (xφ(n))n≥1 where φ : N∗ → N∗ is a strictly
increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology T .
Let (xn)n≥1 be a sequence in E. For all n ≥ 1, let Fn be the closure
of the set {xk : k ≥ n}.

1. Show that for all x ∈ E, xn
T→ x is equivalent to:

∀ε > 0 , ∃n0 ≥ 1 , n ≥ n0 ⇒ d(xn, x) ≤ ε

2. Show that (Fn)n≥1 is a decreasing sequence of closed sets in E.

3. Show that if Fn ↓ ∅, then (F cn)n≥1 is an open covering of E.
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4. Show that if (E, T ) is compact then ∩+∞
n=1Fn �= ∅.

5. Show that if (E, T ) is compact, there exists x ∈ E such that for
all n ≥ 1 and ε > 0, we have B(x, ε) ∩ {xk , k ≥ n} �= ∅.

6. By induction, construct a subsequence (xnp)p≥1 of (xn)n≥1 such
that xnp ∈ B(x, 1/p) for all p ≥ 1.

7. Conclude that if (E, T ) is compact, any sequence (xn)n≥1 in E
has a convergent subsequence.

Exercise 2. Let (E, d) be a metric space, with metric topology T .
We assume that any sequence (xn)n≥1 in E has a convergent subse-
quence. Let (Vi)i∈I be an open covering of E. For x ∈ E, let:

r(x)
�
= sup{r > 0 : B(x, r) ⊆ Vi , for some i ∈ I}

1. Show that ∀x ∈ E, ∃i ∈ I, ∃r > 0, such that B(x, r) ⊆ Vi.
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2. Show that ∀x ∈ E, r(x) > 0.

Exercise 3. Further to ex. (2), suppose infx∈E r(x) = 0.

1. Show that for all n ≥ 1, there is xn ∈ E such that r(xn) < 1/n.

2. Extract a subsequence (xnk
)k≥1 of (xn)n≥1 converging to some

x∗ ∈ E. Let r∗ > 0 and i ∈ I be such that B(x∗, r∗) ⊆ Vi. Show
that we can find some k0 ≥ 1, such that d(x∗, xnk0

) < r∗/2 and
r(xnk0

) ≤ r∗/4.

3. Show that d(x∗, xnk0
) < r∗/2 implies that B(xnk0

, r∗/2) ⊆ Vi.
Show that this contradicts r(xnk0

) ≤ r∗/4, and conclude that
infx∈E r(x) > 0.

Exercise 4. Further to ex. (3), Let r0 with 0 < r0 < infx∈E r(x).
Suppose that E cannot be covered by a finite number of open balls
with radius r0.
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1. Show the existence of a sequence (xn)n≥1 in E, such that for all
n ≥ 1, xn+1 �∈ B(x1, r0) ∪ . . . ∪B(xn, r0).

2. Show that for all n > m we have d(xn, xm) ≥ r0.

3. Show that (xn)n≥1 cannot have a convergent subsequence.

4. Conclude that there exists a finite subset {x1, . . . , xn} of E such
that E = B(x1, r0) ∪ . . . ∪B(xn, r0).

5. Show that for all x ∈ E, we have B(x, r0) ⊆ Vi for some i ∈ I.

6. Conclude that (E, T ) is compact.

7. Prove the following:

Theorem 47 A metrizable topological space (E, T ) is compact, if
and only if for every sequence (xn)n≥1 in E, there exists a subsequence

(xnk
)k≥1 of (xn)n≥1 and some x ∈ E, such that xnk

T→ x.
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Exercise 5. Let a, b ∈ R , a < b and (xn)n≥1 be a sequence in ]a, b[.

1. Show that (xn)n≥1 has a convergent subsequence.

2. Can we conclude that ]a, b[ is a compact subset of R?

Exercise 6. Let E = [−M,M ] × . . .× [−M,M ] ⊆ Rn, where n ≥ 1
and M ∈ R+. Let TRn be the usual product topology on Rn, and
TE = (TRn)|E be the induced topology on E.

1. Let (xp)p≥1 be a sequence in E. Let x ∈ E. Show that xp
TE→ x

is equivalent to xp
TRn→ x.

2. Propose a metric on Rn, inducing the topology TRn .

3. Let (xp)p≥1 be a sequence in Rn. Let x ∈ Rn. Show that

xp
TRn→ x if and only if, xip

TR→ xi for all i ∈ Nn.
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Exercise 7. Further to ex. (6), suppose (xp)p≥1 is a sequence in E.

1. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, such

that x1
φ(p)

T[−M,M]→ x1 for some x1 ∈ [−M,M ].

2. Explain why the above convergence is equivalent to x1
φ(p)

TR→ x1.

3. Suppose that 1 ≤ k ≤ n − 1 and (yp)p≥1 = (xφ(p))p≥1 is a
subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k , xjφ(p)

TR→ xj for some xj ∈ [−M,M ]

Show the existence of a subsequence (yψ(p))p≥1 of (yp)p≥1 such

that yk+1
ψ(p)

TR→ xk+1 for some xk+1 ∈ [−M,M ].

4. Show that φ ◦ ψ : N∗ → N∗ is strictly increasing.
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5. Show that (xφ◦ψ(p))p≥1 is a subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k + 1 , xjφ◦ψ(p)

TR→ xj ∈ [−M,M ]

6. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, and

x ∈ E, such that xφ(p)
TE→ x

7. Show that (E, TE) is a compact topological space.

Exercise 8. Let A be a closed subset of Rn, n ≥ 1, which is bounded
with respect to the usual metric of Rn.

1. Show that A ⊆ E = [−M,M ]×. . .×[−M,M ], for some M ∈ R+.

2. Show from E \A = E ∩Ac that A is closed in E.

3. Show (A, (TRn)|A) is a compact topological space.
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4. Conversely, let A is a compact subset of Rn. Show that A is
closed and bounded.

Theorem 48 A subset of Rn is compact if and only if it is closed
and bounded with respect to its usual metric.

Exercise 9. Let n ≥ 1. Consider the map:

φ :
{

Cn → R2n

(a1 + ib1, . . . , an + ibn) → (a1, b1, . . . , an, bn)

1. Recall the expressions of the usual metrics dCn and dR2n of Cn

and R2n respectively.

2. Show that for all z, z′ ∈ Cn, dCn(z, z′) = dR2n(φ(z), φ(z′)).

3. Show that φ is a homeomorphism from Cn to R2n.
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4. Show that a subset K of Cn is compact, if and only if φ(K) is
a compact subset of R2n.

5. Show that K is closed, if and only if φ(K) is closed.

6. Show that K is bounded, if and only if φ(K) is bounded.

7. Show that a subset K of Cn is compact, if and only if it is closed
and bounded with respect to its usual metric.

Definition 79 Let (E, d) be a metric space. A sequence (xn)n≥1 in
E is said to be a Cauchy sequence with respect to the metric d, if
and only if for all ε > 0, there exists n0 ≥ 1 such that:

n,m ≥ n0 ⇒ d(xn, xm) ≤ ε

Definition 80 We say that a metric space (E, d) is complete, if
and only if for any Cauchy sequence (xn)n≥1 in E, there exists x ∈ E
such that (xn)n≥1 converges to x.
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Exercise 10.

1. Explain why strictly speaking, given p ∈ [1,+∞], definition (77)
of Cauchy sequences in LpC(Ω,F , μ) is not a covered by defini-
tion (79).

2. Explain why LpC(Ω,F , μ) is not a complete metric space, despite
theorem (46) and definition (80).

Exercise 11. Let (zk)k≥1 be a Cauchy sequence in Cn, n ≥ 1, with
respect to the usual metric d(z, z′) = ‖z − z′‖, where:

‖z‖ �
=

√√√√ n∑
i=1

|zi|2

1. Show that the sequence (zk)k≥1 is bounded, i.e. that there exists
M ∈ R+ such that ‖zk‖ ≤M , for all k ≥ 1.
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2. Define B = {z ∈ Cn , ‖z‖ ≤ M}. Show that δ(B) < +∞, and
that B is closed in Cn.

3. Show the existence of a subsequence (zkp)p≥1 of (zk)k≥1 such

that zkp

TCn→ z for some z ∈ B.

4. Show that for all ε > 0, there exists p0 ≥ 1 and n0 ≥ 1 such
that d(z, zkp0

) ≤ ε/2 and:

k ≥ n0 ⇒ d(zk, zkp0
) ≤ ε/2

5. Show that zk
TCn→ z.

6. Conclude that Cn is complete with respect to its usual metric.

7. For which theorem of Tutorial 9 was the completeness of C used?

Exercise 12. Let (xk)k≥1 be a sequence in Rn such that xk
TCn→ z,

for some z ∈ Cn.
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1. Show that z ∈ Rn.

2. Show that Rn is complete with respect to its usual metric.

Theorem 49 Cn and Rn are complete w.r. to their usual metrics.

Exercise 13. Let (E, d) be a metric space, with metric topology T .
Let F ⊆ E, and F̄ denote the closure of F .

1. Explain why, for all x ∈ F̄ and n ≥ 1, we have F∩B(x, 1/n) �= ∅.

2. Show that for all x ∈ F̄ , there exists a sequence (xn)n≥1 in F ,
such that xn

T→ x.

3. Show conversely that if there is a sequence (xn)n≥1 in F with

xn
T→ x, then x ∈ F̄ .
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4. Show that F is closed if and only if for all sequence (xn)n≥1 in
F such that xn

T→ x for some x ∈ E, we have x ∈ F .

5. Explain why (F, T|F ) is metrizable.

6. Show that if F is complete with respect to the metric d|F×F ,
then F is closed in E.

7. Let dR̄ be a metric on R̄, inducing the usual topology TR̄. Show
that d′ = (dR̄)|R×R is a metric on R, inducing the topology TR.

8. Find a metric on [−1, 1] which induces its usual topology.

9. Show that {−1, 1} is not open in [−1, 1].

10. Show that {−∞,+∞} is not open in R̄.

11. Show that R is not closed in R̄.

12. Let dR be the usual metric of R. Show that d′ = (dR̄)|R×R

and dR induce the same topology on R, but that however, R
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is complete with respect to dR, whereas it cannot be complete
with respect to d′.

Definition 81 Let H be a K-vector space, where K = R or C. We
call inner-product on H, any map 〈·, ·〉 : H × H → K with the
following properties:

(i) ∀x, y ∈ H , 〈x, y〉 = 〈y, x〉
(ii) ∀x, y, z ∈ H , 〈x+ z, y〉 = 〈x, y〉 + 〈z, y〉

(iii) ∀x, y ∈ H, ∀α ∈ K , 〈αx, y〉 = α〈x, y〉
(iv) ∀x ∈ H , 〈x, x〉 ≥ 0
(v) ∀x ∈ H , (〈x, x〉 = 0 ⇔ x = 0)

where for all z ∈ C, z̄ denotes the complex conjugate of z. For all
x ∈ H, we call norm of x, denoted ‖x‖, the number defined by:

‖x‖ �
=

√
〈x, x〉
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Exercise 14. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all y ∈ H, the map x→ 〈x, y〉 is linear.

2. Show that for all x ∈ H, the map y → 〈x, y〉 is linear if K = R,
and conjugate-linear if K = C.

Exercise 15. Let 〈·, ·〉 be an inner-product on a K-vector space H.
Let x, y ∈ H. Let A = ‖x‖2, B = |〈x, y〉| and C = ‖y‖2. let α ∈ K
be such that |α| = 1 and:

B = α〈x, y〉

1. Show that A,B,C ∈ R+.

2. For all t ∈ R, show that 〈x− tαy, x− tαy〉 = A− 2tB + t2C.

3. Show that if C = 0 then B2 ≤ AC.
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4. Suppose that C �= 0. Show that P (t) = A − 2tB + t2C has a
minimal value which is in R+, and conclude that B2 ≤ AC.

5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz’s inequality:second) Let H be
a K-vector space, where K = R or C, and 〈·, ·〉 be an inner-product
on H. Then, for all x, y ∈ H, we have:

|〈x, y〉| ≤ ‖x‖.‖y‖

Exercise 16. For all f, g ∈ L2
C(Ω,F , μ), we define:

〈f, g〉 �
=

∫
Ω

f ḡdμ

1. Use the first Cauchy-Schwarz inequality (42) to prove that for
all f, g ∈ L2

C(Ω,F , μ), we have f ḡ ∈ L1
C(Ω,F , μ). Conclude

that 〈f, g〉 is a well-defined complex number.
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2. Show that for all f ∈ L2
C(Ω,F , μ), we have ‖f‖2 =

√
〈f, f〉.

3. Make another use of the first Cauchy-Schwarz inequality to show
that for all f, g ∈ L2

C(Ω,F , μ), we have:

|〈f, g〉| ≤ ‖f‖2.‖g‖2 (1)

4. Go through definition (81), and indicate which of the properties
(i) − (v) fails to be satisfied by 〈·, ·〉. Conclude that 〈·, ·〉 is not
an inner-product on L2

C(Ω,F , μ), and therefore that inequal-
ity (*) is not a particular case of the second Cauchy-Schwarz
inequality (50).

5. Let f, g ∈ L2
C(Ω,F , μ). By considering

∫
(|f |+t|g|)2dμ for t ∈ R,

imitate the proof of the second Cauchy-Schwarz inequality to
show that: ∫

Ω

|fg|dμ ≤
(∫

Ω

|f |2dμ
) 1

2
(∫

Ω

|g|2dμ
) 1

2

www.probability.net

http://www.probability.net


Tutorial 10: Bounded Linear Functionals in L2 18

6. Let f, g : (Ω,F) → [0,+∞] non-negative and measurable. Show
that if

∫
f2dμ and

∫
g2dμ are finite, then f and g are μ-almost

surely equal to elements of L2
C(Ω,F , μ). Deduce from 5. a new

proof of the first Cauchy-Schwarz inequality:
∫

Ω

fgdμ ≤
(∫

Ω

f2dμ

) 1
2

(∫
Ω

g2dμ

) 1
2

Exercise 17. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all x, y ∈ H, we have:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈x, y〉

2. Using the second Cauchy-Schwarz inequality (50), show that:

‖x+ y‖ ≤ ‖x‖ + ‖y‖

3. Show that d〈·,·〉(x, y) = ‖x− y‖ defines a metric on H.

www.probability.net

http://www.probability.net


Tutorial 10: Bounded Linear Functionals in L2 19

Definition 82 Let H be a K-vector space, where K = R or C,
and 〈·, ·〉 be an inner-product on H. We call norm topology on H,
denoted T〈·,·〉, the metric topology associated with d〈·,·〉(x, y) = ‖x−y‖.

Definition 83 We call Hilbert space over K where K = R or
C, any ordered pair (H, 〈·, ·〉) where 〈·, ·〉 is an inner-product on a
K-vector space H, which is complete w.r. to d〈·,·〉(x, y) = ‖x− y‖.

Exercise 18. Let (H, 〈·, ·〉) be a Hilbert space over K and let M
be a closed linear subspace of H, (closed with respect to the norm
topology T〈·,·〉). Define [·, ·] = 〈·, ·〉|M×M.

1. Show that [·, ·] is an inner-product on the K-vector space M.

2. With obvious notations, show that d[·,·] = (d〈·,·〉)|M×M.

3. Deduce that T[·,·] = (T〈·,·〉)|M.
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Exercise 19. Further to ex. (18), Let (xn)n≥1 be a Cauchy sequence
in M, with respect to the metric d[·,·].

1. Show that (xn)n≥1 is a Cauchy sequence in H.

2. Explain why there exists x ∈ H such that xn
T〈·,·〉→ x.

3. Explain why x ∈ M.

4. Explain why we also have xn
T[·,·]→ x.

5. Explain why (M, 〈·, ·〉|M×M) is a Hilbert space over K.

Exercise 20. For all z, z′ ∈ Cn, n ≥ 1, we define:

〈z, z′〉 �
=

n∑
i=1

ziz̄i
′
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1. Show that 〈·, ·〉 is an inner-product on Cn.

2. Show that the metric d〈·,·〉 is equal to the usual metric of Cn.

3. Conclude that (Cn, 〈·, ·〉) is a Hilbert space over C.

4. Show that Rn is a closed subset of Cn.

5. Show however that Rn is not a linear subspace of Cn.

6. Show that (Rn, 〈·, ·〉|Rn×Rn) is a Hilbert space over R.

Definition 84 We call usual inner-product in Kn, where K = R
or C, the inner-product denoted 〈·, ·〉 and defined by:

∀x, y ∈ Kn , 〈x, y〉 =
n∑
i=1

xiȳi
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Theorem 51 Cn and Rn together with their usual inner-products,
are Hilbert spaces over C and R respectively.

Definition 85 Let H be a K-vector space, where K = R or C. Let
C ⊆ H. We say that C is a convex subset or H, if and only if, for
all x, y ∈ C and t ∈ [0, 1], we have tx+ (1 − t)y ∈ C.

Exercise 21. Let (H, 〈·, ·〉) be a Hilbert space over K. Let C ⊆ H
be a non-empty closed convex subset of H. Let x0 ∈ H. Define:

δmin
�
= inf{‖x− x0‖ : x ∈ C}

1. Show the existence of a sequence (xn)n≥1 in C such that
‖xn − x0‖ → δmin.

2. Show that for all x, y ∈ H, we have:

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥
2
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3. Explain why for all n,m ≥ 1, we have:

δmin ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥
4. Show that for all n,m ≥ 1, we have:

‖xn − xm‖2 ≤ 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4δ2min

5. Show the existence of some x∗ ∈ H, such that xn
T〈·,·〉→ x∗.

6. Explain why x∗ ∈ C

7. Show that for all x, y ∈ H, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

8. Show that ‖xn − x0‖ → ‖x∗ − x0‖.

9. Conclude that we have found x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}
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10. Let y∗ be another element of C with such property. Show that:

‖x∗ − y∗‖2 ≤ 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4δ2min

11. Conclude that x∗ = y∗.

Theorem 52 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let C be a non-empty, closed and convex subset of H. For all
x0 ∈ H, there exists a unique x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

Definition 86 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let G ⊆ H. We call orthogonal of G, the subset of H denoted
G⊥ and defined by:

G⊥ �
= { x ∈ H : 〈x, y〉 = 0 , ∀y ∈ G }

Exercise 22. Let (H, 〈·, ·〉) be a Hilbert space over K and G ⊆ H.
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1. Show that G⊥ is a linear subspace of H, even if G isn’t.

2. Show that φy : H → K defined by φy(x) = 〈x, y〉 is continuous.

3. Show that G⊥ = ∩y∈Gφ
−1
y ({0}).

4. Show that G⊥ is a closed subset of H, even if G isn’t.

5. Show that ∅⊥ = {0}⊥ = H.

6. Show that H⊥ = {0}.

Exercise 23. Let (H, 〈·, ·〉) be a Hilbert space over K. Let M be a
closed linear subspace of H, and x0 ∈ H.

1. Explain why there exists x∗ ∈ M such that:

‖x∗ − x0‖ = inf{ ‖x− x0‖ : x ∈ M }
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2. Define y∗ = x0 − x∗ ∈ H. Show that for all y ∈ M and α ∈ K:

‖y∗‖2 ≤ ‖y∗ − αy‖2

3. Show that for all y ∈ M and α ∈ K, we have:

0 ≤ −α〈y, y∗〉 − α〈y, y∗〉 + |α|2.‖y‖2

4. For all y ∈ M \ {0}, taking α = 〈y, y∗〉/‖y‖2, show that:

0 ≤ −|〈y, y∗〉|2
‖y‖2

5. Conclude that x∗ ∈ M, y∗ ∈ M⊥ and x0 = x∗ + y∗.

6. Show that M∩M⊥ = {0}

7. Show that x∗ ∈ M and y∗ ∈ M⊥ with x0 = x∗+y∗, are unique.
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Theorem 53 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let M be a closed linear subspace of H. Then, for all x0 ∈ H,
there is a unique decomposition:

x0 = x∗ + y∗

where x∗ ∈ M and y∗ ∈ M⊥.

Definition 87 Let H be a K-vector space, where K = R or C.
We call linear functional, any map λ : H → K, such that for all
x, y ∈ H and α ∈ K:

λ(x + αy) = λ(x) + αλ(y)

Exercise 24. Let λ be a linear functional on a K-Hilbert1 space H.

1. Suppose that λ is continuous at some point x0 ∈ H. Show the
existence of η > 0 such that:

∀x ∈ H , ‖x− x0‖ ≤ η ⇒ |λ(x) − λ(x0)| ≤ 1
1Norm vector spaces are introduced later in these tutorials.
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Show that for all x ∈ H with x �= 0, we have |λ(ηx/‖x‖)| ≤ 1.

2. Show that if λ is continuous at x0, there exits M ∈ R+, with:

∀x ∈ H , |λ(x)| ≤M‖x‖ (2)

3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let (H, 〈·, ·〉) be a Hilbert2 space over K = R or C.
Let λ be a linear functional on H. Then, the following are equivalent:

(i) λ : (H, T〈·,·〉) → (K, TK) is continuous

(ii) ∃M ∈ R+ , ∀x ∈ H , |λ(x)| ≤M.‖x‖
In which case, we say that λ is a bounded linear functional.

2Norm vector spaces are introduced later in these tutorials.
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Exercise 25. Let (H, 〈·, ·〉) be a Hilbert space over K. Let λ be a
bounded linear functional on H, such that λ(x) �= 0 for some x ∈ H,
and define M = λ−1({0}).

1. Show the existence of x0 ∈ H, such that x0 �∈ M.

2. Show the existence of x∗ ∈ M and y∗ ∈ M⊥ with x0 = x∗ + y∗.

3. Deduce the existence of some z ∈ M⊥ such that ‖z‖ = 1.

4. Show that for all α ∈ K \ {0} and x ∈ H, we have:

λ(x)
ᾱ

〈z, αz〉 = λ(x)

5. Show that in order to have:

∀x ∈ H , λ(x) = 〈x, αz〉
it is sufficient to choose α ∈ K \ {0} such that:

∀x ∈ H ,
λ(x)z
ᾱ

− x ∈ M
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6. Show the existence of y ∈ H such that:

∀x ∈ H , λ(x) = 〈x, y〉

7. Show the uniqueness of such y ∈ H.

Theorem 54 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let λ be a bounded linear functional on H. Then, there exists
a unique y ∈ H such that: ∀x ∈ H , λ(x) = 〈x, y〉.

Definition 89 Let K = R or C. We call K-vector space, any set
H, together with operators ⊕ and ⊗ for which there exits an element
0H ∈ H such that for all x, y, z ∈ H and α, β ∈ K, we have:

(i) 0H ⊕ x = x

(ii) ∃(−x) ∈ H , (−x) ⊕ x = 0H
(iii) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z
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(iv) x⊕ y = y ⊕ x

(v) 1 ⊗ x = x

(vi) α⊗ (β ⊗ x) = (αβ) ⊗ x

(vii) (α+ β) ⊗ x = (α⊗ x) ⊕ (β ⊗ x)
(viii) α⊗ (x⊕ y) = (α ⊗ x) ⊕ (α⊗ y)

Exercise 26. For all f ∈ L2
K(Ω,F , μ), define:

H �
= { [f ] : f ∈ L2

K(Ω,F , μ) }

where [f ] = {g ∈ L2
K(Ω,F , μ) : g = f, μ-a.s.}. Let 0H = [0], and for

all [f ], [g] ∈ H, and α ∈ K, we define:

[f ] ⊕ [g]
�
= [f + g]

α⊗ [f ]
�
= [αf ]

We assume f, f ′, g and g′ are elements of L2
K(Ω,F , μ).
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1. Show that for f = g μ-a.s. is equivalent to [f ] = [g].

2. Show that if [f ] = [f ′] and [g] = [g′], then [f + g] = [f ′ + g′].

3. Conclude that ⊕ is well-defined.

4. Show that ⊗ is also well-defined.

5. Show that (H,⊕,⊗) is a K-vector space.

Exercise 27. Further to ex. (26), we define for all [f ], [g] ∈ H:

〈[f ], [g]〉H
�
=

∫
Ω

f ḡdμ

1. Show that 〈·, ·〉H is well-defined.

2. Show that 〈·, ·〉H is an inner-product on H.

3. Show that (H, 〈·, ·〉H) is a Hilbert space over K.
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4. Why is 〈f, g〉 �
=

∫
Ω
f ḡdμ not an inner-product on L2

K(Ω,F , μ)?

Exercise 28. Further to ex. (27), Let λ : L2
K(Ω,F , μ) → K be a

continuous linear functional3. Define Λ : H → K by Λ([f ]) = λ(f).

1. Show the existence of M ∈ R+ such that:

∀f ∈ L2
K(Ω,F , μ) , |λ(f)| ≤M.‖f‖2

2. Show that if [f ] = [g] then λ(f) = λ(g).

3. Show that Λ is a well defined bounded linear functional on H.

4. Conclude with the following:
3As defined in these tutorials, L2

K(Ω,F , µ) is not a Hilbert space (not even a
norm vector space). However, both L2

K(Ω,F , µ) and K have natural topologies
and it is therefore meaningful to speak of continuous linear functional. Note
however that we are slightly outside the framework of definition (88).
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Theorem 55 Let λ : L2
K(Ω,F , μ) → K be a continuous linear func-

tional, where K = R or C. There exists g ∈ L2
K(Ω,F , μ) such that:

∀f ∈ L2
K(Ω,F , μ) , λ(f) =

∫
Ω

f ḡdμ
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