2. Caratheodory's Extension

In the following, Ω is a set. Whenever a union of sets is denoted \forall as opposed to \cup , it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Ω is a subset S of the power set $\mathcal{P}(\Omega)$ with the following properties:

(i)
$$\emptyset \in \mathcal{S}$$

(ii)
$$A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$$

(iii)
$$A, B \in \mathcal{S} \implies \exists n \ge 0, \ \exists A_i \in \mathcal{S} : \ A \setminus B = \biguplus_{i=1}^{m} A_i$$

The last property (iii) says that whenever $A, B \in \mathcal{S}$, there is $n \geq 0$ and A_1, \ldots, A_n in \mathcal{S} which are pairwise disjoint, such that $A \setminus B = A_1 \uplus \ldots \uplus A_n$. If n = 0, it is understood that the corresponding union is equal to \emptyset , (in which case $A \subseteq B$).

Definition 7 A ring on Ω is a subset \mathcal{R} of the power set $\mathcal{P}(\Omega)$ with the following properties:

- (i) $\emptyset \in \mathcal{R}$
- (ii) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$
- $(iii) A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R}$

EXERCISE 1. Show that $A \cap B = A \setminus (A \setminus B)$ and therefore that a ring is closed under pairwise intersection.

EXERCISE 2.Show that a ring on Ω is also a semi-ring on Ω .

EXERCISE 3.Suppose that a set Ω can be decomposed as $\Omega = A_1 \uplus A_2 \uplus A_3$ where A_1, A_2 and A_3 are distinct from \emptyset and Ω . Define $\mathcal{S}_1 \stackrel{\triangle}{=} \{\emptyset, A_1, A_2, A_3, \Omega\}$ and $\mathcal{S}_2 \stackrel{\triangle}{=} \{\emptyset, A_1, A_2 \uplus A_3, \Omega\}$. Show that \mathcal{S}_1 and \mathcal{S}_2 are semi-rings on Ω , but that $\mathcal{S}_1 \cap \mathcal{S}_2$ fails to be a semi-ring on Ω .

EXERCISE 4. Let $(\mathcal{R}_i)_{i\in I}$ be an arbitrary family of rings on Ω , with $I \neq \emptyset$. Show that $\mathcal{R} \stackrel{\triangle}{=} \cap_{i\in I} \mathcal{R}_i$ is also a ring on Ω .

EXERCISE 5. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Define:

$$R(\mathcal{A}) \stackrel{\triangle}{=} \{ \mathcal{R} \text{ ring on } \Omega : \mathcal{A} \subseteq \mathcal{R} \}$$

Show that $\mathcal{P}(\Omega)$ is a ring on Ω , and that $R(\mathcal{A})$ is not empty. Define:

$$\mathcal{R}(\mathcal{A}) \stackrel{\triangle}{=} \bigcap_{\mathcal{R} \in R(\mathcal{A})} \mathcal{R}$$

Show that $\mathcal{R}(\mathcal{A})$ is a ring on Ω such that $\mathcal{A} \subseteq \mathcal{R}(\mathcal{A})$, and that it is the smallest ring on Ω with such property, (i.e. if \mathcal{R} is a ring on Ω and $\mathcal{A} \subseteq \mathcal{R}$ then $\mathcal{R}(\mathcal{A}) \subseteq \mathcal{R}$).

Definition 8 Let $A \subseteq \mathcal{P}(\Omega)$. We call **ring generated** by A, the ring on Ω , denoted $\mathcal{R}(A)$, equal to the intersection of all rings on Ω , which contain A.

EXERCISE 6.Let S be a semi-ring on Ω . Define the set R of all finite unions of pairwise disjoint elements of S, i.e.

$$\mathcal{R} \stackrel{\triangle}{=} \{A: A = \biguplus_{i=1}^{n} A_i \text{ for some } n \geq 0, A_i \in \mathcal{S}\}$$

(where if n = 0, the corresponding union is empty, i.e. $\emptyset \in \mathcal{R}$). Let $A = \bigoplus_{i=1}^{n} A_i$ and $B = \bigoplus_{j=1}^{p} B_j \in \mathcal{R}$:

- 1. Show that $A \cap B = \bigcup_{i,j} (A_i \cap B_j)$ and that \mathcal{R} is closed under pairwise intersection.
- 2. Show that if $p \ge 1$ then $A \setminus B = \bigcap_{i=1}^p (\bigoplus_{i=1}^n (A_i \setminus B_i))$.
- 3. Show that \mathcal{R} is closed under pairwise difference.
- 4. Show that $A \cup B = (A \setminus B) \uplus B$ and conclude that \mathcal{R} is a ring on Ω .
- 5. Show that $\mathcal{R}(\mathcal{S}) = \mathcal{R}$.

EXERCISE 7. Everything being as before, define:

$$\mathcal{R}' \stackrel{\triangle}{=} \{A : A = \bigcup_{i=1}^n A_i \text{ for some } n \geq 0, A_i \in \mathcal{S}\}$$

(We do not require the sets involved in the union to be pairwise disjoint). Using the fact that \mathcal{R} is closed under finite union, show that $\mathcal{R}' \subseteq \mathcal{R}$, and conclude that $\mathcal{R}' = \mathcal{R} = \mathcal{R}(\mathcal{S})$.

Definition 9 Let $A \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in A$. We call **measure** on A, any map $\mu : A \to [0, +\infty]$ with the following properties:

$$(i) \qquad \mu(\emptyset) = 0$$

(ii)
$$A \in \mathcal{A}, A_n \in \mathcal{A} \text{ and } A = \biguplus_{n=1}^{+\infty} A_n \Rightarrow \mu(A) = \sum_{n=1}^{+\infty} \mu(A_n)$$

The \oplus indicates that we assume the A_n 's to be pairwise disjoint in the l.h.s. of (ii). It is customary to say in view of condition (ii) that a measure is *countably additive*.

EXERCISE 8.If \mathcal{A} is a σ -algebra on Ω explain why property (ii) can be replaced by:

$$(ii)'$$
 $A_n \in \mathcal{A}$ and $A = \biguplus^{+\infty} A_n \Rightarrow \mu(A) = \sum_{n=1}^{+\infty} \mu(A_n)$

EXERCISE 9. Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in \mathcal{A}$ and $\mu : \mathcal{A} \to [0, +\infty]$ be a measure on \mathcal{A} .

- 1. Show that if $A_1, \ldots, A_n \in \mathcal{A}$ are pairwise disjoint and the union $A = \bigoplus_{i=1}^n A_i$ lies in \mathcal{A} , then $\mu(A) = \mu(A_1) + \ldots + \mu(A_n)$.
- 2. Show that if $A, B \in \mathcal{A}, A \subseteq B$ and $B \setminus A \in \mathcal{A}$ then $\mu(A) \leq \mu(B)$.

EXERCISE 10. Let S be a semi-ring on Ω , and $\mu: S \to [0, +\infty]$ be a measure on S. Suppose that there exists an extension of μ on $\mathcal{R}(S)$, i.e. a measure $\bar{\mu}: \mathcal{R}(S) \to [0, +\infty]$ such that $\bar{\mu}_{|S} = \mu$.

- 1. Let A be an element of $\mathcal{R}(\mathcal{S})$ with representation $A = \bigcup_{i=1}^{n} A_i$ as a finite union of pairwise disjoint elements of \mathcal{S} . Show that $\bar{\mu}(A) = \sum_{i=1}^{n} \mu(A_i)$
- 2. Show that if $\bar{\mu}': \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ is another measure with $\bar{\mu}'_{|\mathcal{S}} = \mu$, i.e. another extension of μ on $\mathcal{R}(\mathcal{S})$, then $\bar{\mu}' = \bar{\mu}$.

EXERCISE 11. Let S be a semi-ring on Ω and $\mu: S \to [0, +\infty]$ be a measure. Let A be an element of $\mathcal{R}(S)$ with two representations:

$$A = \biguplus_{i=1}^{n} A_i = \biguplus_{j=1}^{p} B_j$$

as a finite union of pairwise disjoint elements of S.

- 1. For i = 1, ..., n, show that $\mu(A_i) = \sum_{i=1}^{p} \mu(A_i \cap B_j)$
- 2. Show that $\sum_{i=1}^n \mu(A_i) = \sum_{j=1}^p \mu(B_j)$
- 3. Explain why we can define a map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ as:

$$\bar{\mu}(A) \stackrel{\triangle}{=} \sum_{i=1}^{n} \mu(A_i)$$

4. Show that $\bar{\mu}(\emptyset) = 0$.

EXERCISE 12. Everything being as before, suppose that $(A_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$, each A_n having the representation:

$$A_n = \biguplus_{k=1}^{p_n} A_n^k \ , \ n \ge 1$$

as a finite union of disjoint elements of S. Suppose moreover that $A = \bigoplus_{n=1}^{+\infty} A_n$ is an element of $\mathcal{R}(S)$ with representation $A = \bigoplus_{j=1}^{p} B_j$, as a finite union of pairwise disjoint elements of S.

- 1. Show that for $j=1,\ldots,p,\ B_j=\bigcup_{n=1}^{+\infty}\bigcup_{k=1}^{p_n}\left(A_n^k\cap B_j\right)$ and explain why B_j is of the form $B_j=\bigoplus_{m=1}^{+\infty}C_m$ for some sequence $(C_m)_{m>1}$ of pairwise disjoint elements of \mathcal{S} .
- 2. Show that $\mu(B_j) = \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \mu(A_n^k \cap B_j)$
- 3. Show that for $n \geq 1$ and $k = 1, \ldots, p_n, A_n^k = \bigoplus_{j=1}^p (A_n^k \cap B_j)$

- 4. Show that $\mu(A_n^k) = \sum_{j=1}^p \mu(A_n^k \cap B_j)$
- 5. Recall the definition of $\bar{\mu}$ of exercise (11) and show that it is a measure on $\mathcal{R}(\mathcal{S})$.

EXERCISE 13. Prove the following theorem:

Theorem 2 Let S be a semi-ring on Ω . Let $\mu: S \to [0, +\infty]$ be a measure on S. There exists a unique measure $\bar{\mu}: \mathcal{R}(S) \to [0, +\infty]$ such that $\bar{\mu}_{|S} = \mu$.

Definition 10 We define an **outer-measure** on Ω as being any $map \ \mu^* : \mathcal{P}(\Omega) \to [0, +\infty]$ with the following properties:

(i)
$$\mu^*(\emptyset) = 0$$

(ii) $A \subseteq B \Rightarrow \mu^*(A) \le \mu^*(B)$

(iii)
$$\mu^* \left(\bigcup_{n=1}^{+\infty} A_n \right) \le \sum_{n=1}^{+\infty} \mu^* (A_n)$$

EXERCISE 14. Show that $\mu^*(A \cup B) \leq \mu^*(A) + \mu^*(B)$, where μ^* is an outer-measure on Ω and $A, B \subseteq \Omega$.

Definition 11 Let μ^* be an outer-measure on Ω . We define:

$$\Sigma(\mu^*) \stackrel{\triangle}{=} \{ A \subseteq \Omega : \ \mu^*(T) = \mu^*(T \cap A) + \mu^*(T \cap A^c) \ , \ \forall T \subseteq \Omega \}$$

We call $\Sigma(\mu^*)$ the σ -algebra associated with the outer-measure μ^* .

Note that the fact that $\Sigma(\mu^*)$ is indeed a σ -algebra on Ω , remains to be proved. This will be your task in the following exercises.

EXERCISE 15. Let μ^* be an outer-measure on Ω . Let $\Sigma = \Sigma(\mu^*)$ be the σ -algebra associated with μ^* . Let $A, B \in \Sigma$ and $T \subseteq \Omega$

- 1. Show that $\Omega \in \Sigma$ and $A^c \in \Sigma$.
- 2. Show that $\mu^*(T \cap A) = \mu^*(T \cap A \cap B) + \mu^*(T \cap A \cap B^c)$
- 3. Show that $T \cap A^c = T \cap (A \cap B)^c \cap A^c$
- 4. Show that $T \cap A \cap B^c = T \cap (A \cap B)^c \cap A$
- 5. Show that $\mu^*(T \cap A^c) + \mu^*(T \cap A \cap B^c) = \mu^*(T \cap (A \cap B)^c)$
- 6. Adding $\mu^*(T \cap (A \cap B))$ on both sides 5., conclude that $A \cap B \in \Sigma$.
- 7. Show that $A \cup B$ and $A \setminus B$ belong to Σ .

EXERCISE 16. Everything being as before, let $A_n \in \Sigma, n \geq 1$. Define $B_1 = A_1$ and $B_{n+1} = A_{n+1} \setminus (A_1 \cup \ldots \cup A_n)$. Show that the B_n 's are pairwise disjoint elements of Σ and that $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$.

EXERCISE 17. Everything being as before, show that if $B, C \in \Sigma$ and $B \cap C = \emptyset$, then $\mu^*(T \cap (B \uplus C)) = \mu^*(T \cap B) + \mu^*(T \cap C)$ for any $T \subseteq \Omega$.

EXERCISE 18.Everything being as before, let $(B_n)_{n\geq 1}$ be a sequence of pairwise disjoint elements of Σ , and let $B \stackrel{\triangle}{=} \bigcup_{n=1}^{+\infty} B_n$. Let $N \geq 1$.

- 1. Explain why $\biguplus_{n=1}^{N} B_n \in \Sigma$
- 2. Show that $\mu^*(T \cap (\uplus_{n=1}^N B_n)) = \sum_{n=1}^N \mu^*(T \cap B_n)$
- 3. Show that $\mu^*(T \cap B^c) \leq \mu^*(T \cap (\bigcup_{n=1}^N B_n)^c)$
- 4. Show that $\mu^*(T \cap B^c) + \sum_{n=1}^{+\infty} \mu^*(T \cap B_n) \le \mu^*(T)$, and:
- 5. $\mu^*(T) \le \mu^*(T \cap B^c) + \mu^*(T \cap B) \le \mu^*(T \cap B^c) + \sum_{n=1}^{+\infty} \mu^*(T \cap B_n)$
- 6. Show that $B \in \Sigma$ and $\mu^*(B) = \sum_{n=1}^{+\infty} \mu^*(B_n)$.
- 7. Show that Σ is a σ -algebra on Ω , and $\mu_{|\Sigma}^*$ is a measure on Σ .

Theorem 3 Let $\mu^* : \mathcal{P}(\Omega) \to [0, +\infty]$ be an outer-measure on Ω . Then $\Sigma(\mu^*)$, the so-called σ -algebra associated with μ^* , is indeed a σ -algebra on Ω and $\mu^*_{|\Sigma(\mu^*)}$, is a measure on $\Sigma(\mu^*)$.

EXERCISE 19. Let \mathcal{R} be a ring on Ω and $\mu : \mathcal{R} \to [0, +\infty]$ be a measure on \mathcal{R} . For all $T \subseteq \Omega$, define:

$$\mu^*(T) \stackrel{\triangle}{=} \inf \left\{ \sum_{n=1}^{+\infty} \mu(A_n) , (A_n) \text{ is an } \mathcal{R}\text{-cover of } T \right\}$$

where an \mathcal{R} -cover of T is defined as any sequence $(A_n)_{n\geq 1}$ of elements of \mathcal{R} such that $T\subseteq \bigcup_{n=1}^{+\infty}A_n$. By convention inf $\emptyset \stackrel{\triangle}{=} +\infty$.

- 1. Show that $\mu^*(\emptyset) = 0$.
- 2. Show that if $A \subseteq B$ then $\mu^*(A) \leq \mu^*(B)$.

3. Let $(A_n)_{n\geq 1}$ be a sequence of subsets of Ω , with $\mu^*(A_n) < +\infty$ for all $n \geq 1$. Given $\epsilon > 0$, show that for all $n \geq 1$, there exists an \mathbb{R} -cover $(A_n^p)^{p\geq 1}$ of A_n such that:

$$\sum_{p=1}^{+\infty} \mu(A_n^p) < \mu^*(A_n) + \epsilon/2^n$$

Why is it important to assume $\mu^*(A_n) < +\infty$.

4. Show that there exists an \mathcal{R} -cover (R_k) of $\bigcup_{n=1}^{+\infty} A_n$ such that:

$$\sum_{k=1}^{+\infty} \mu(R_k) = \sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu(A_n^p)$$

- 5. Show that $\mu^*(\bigcup_{n=1}^{+\infty} A_n) \le \epsilon + \sum_{n=1}^{+\infty} \mu^*(A_n)$
- 6. Show that μ^* is an outer-measure on Ω .

EXERCISE 20. Everything being as before, Let $A \in \mathcal{R}$. Let $(A_n)_{n\geq 1}$ be an \mathcal{R} -cover of A and put $B_1 = A_1 \cap A$, and:

$$B_{n+1} \stackrel{\triangle}{=} (A_{n+1} \cap A) \setminus ((A_1 \cap A) \cup \ldots \cup (A_n \cap A))$$

- 1. Show that $\mu^*(A) \leq \mu(A)$.
- 2. Show that $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{R} such that $A=\bigoplus_{n=1}^{+\infty}B_n$.
- 3. Show that $\mu(A) \leq \mu^*(A)$ and conclude that $\mu_{|\mathcal{R}|}^* = \mu$.

EXERCISE 21. Everything being as before, Let $A \in \mathcal{R}$ and $T \subseteq \Omega$.

- 1. Show that $\mu^*(T) \leq \mu^*(T \cap A) + \mu^*(T \cap A^c)$.
- 2. Let (T_n) be an \mathcal{R} -cover of T. Show that $(T_n \cap A)$ and $(T_n \cap A^c)$ are \mathcal{R} -covers of $T \cap A$ and $T \cap A^c$ respectively.
- 3. Show that $\mu^*(T \cap A) + \mu^*(T \cap A^c) \le \mu^*(T)$.

- 4. Show that $\mathcal{R} \subseteq \Sigma(\mu^*)$.
- 5. Conclude that $\sigma(\mathcal{R}) \subseteq \Sigma(\mu^*)$.

Exercise 22. Prove the following theorem:

Theorem 4 (Caratheodory's extension) Let \mathcal{R} be a ring on Ω and $\mu: \mathcal{R} \to [0, +\infty]$ be a measure on \mathcal{R} . There exists a measure $\mu': \sigma(\mathcal{R}) \to [0, +\infty]$ such that $\mu'_{|\mathcal{R}} = \mu$.

EXERCISE 23. Let S be a semi-ring on Ω . Show that $\sigma(\mathcal{R}(S)) = \sigma(S)$.

EXERCISE 24. Prove the following theorem:

Theorem 5 Let S be a semi-ring on Ω and $\mu: S \to [0, +\infty]$ be a measure on S. There exists a measure $\mu': \sigma(S) \to [0, +\infty]$ such that $\mu'_{|S} = \mu$.