16. Differentiation

Definition 115 Let (Ω, T) be a topological space. A map $f : \Omega \to \bar{\mathbf{R}}$ is said to be **lower-semi-continuous** (l.s.c), if and only if:

$$\forall \lambda \in \mathbf{R}$$
, $\{\lambda < f\}$ is open

We say that f is **upper-semi-continuous** (u.s.c), if and only if:

$$\forall \lambda \in \mathbf{R} , \{f < \lambda\} \text{ is open }$$

EXERCISE 1. Let $f: \Omega \to \bar{\mathbf{R}}$ be a map, where Ω is a topological space.

- 1. Show that f is l.s.c if and only if $\{\lambda < f\}$ is open for all $\lambda \in \bar{\mathbb{R}}$.
- 2. Show that f is u.s.c if and only if $\{f < \lambda\}$ is open for all $\lambda \in \overline{\mathbf{R}}$.
- 3. Show that every open set U in \mathbf{R} can be written:

$$U = V^+ \cup V^- \cup \bigcup_{i \in I}]\alpha_i, \beta_i[$$

for some index set
$$I$$
, $\alpha_i, \beta_i \in \mathbf{R}$, $V^+ = \emptyset$ or $V^+ =]\alpha, +\infty]$, $(\alpha \in \mathbf{R})$ and $V^- = \emptyset$ or $V^- = [-\infty, \beta[, (\beta \in \mathbf{R}).$

- 4. Show that f is continuous if and only if it is both l.s.c and u.s.c.
- 5. Let $u: \Omega \to \mathbf{R}$ and $v: \Omega \to \bar{\mathbf{R}}$. Let $\lambda \in \mathbf{R}$. Show that:

$$\{\lambda < u + v\} = \bigcup_{\begin{subarray}{c} (\lambda_1, \lambda_2) \in \mathbf{R}^2 \\ \lambda_1 + \lambda_2 = \lambda \end{subarray}} \{\lambda_1 < u\} \cap \{\lambda_2 < v\}$$

- 6. Show that if both u and v are l.s.c, then u + v is also l.s.c.
- 7. Show that if both u and v are u.s.c, then u + v is also u.s.c.
- 8. Show that if f is l.s.c, then αf is l.s.c, for all $\alpha \in \mathbf{R}^+$.
- 9. Show that if f is u.s.c, then αf is u.s.c, for all $\alpha \in \mathbb{R}^+$.
- 10. Show that if f is l.s.c, then -f is u.s.c.

- 11. Show that if f is u.s.c, then -f is l.s.c.
- 12. Show that if V is open in Ω , then $f = 1_V$ is l.s.c.
- 13. Show that if F is closed in Ω , then $f = 1_F$ is u.s.c.

EXERCISE 2. Let $(f_i)_{i\in I}$ be an a arbitrary family of maps $f_i:\Omega\to\bar{\mathbf{R}}$, defined on a topological space Ω .

- 1. Show that if all f_i 's are l.s.c, then $f = \sup_{i \in I} f_i$ is l.s.c.
- 2. Show that if all f_i 's are u.s.c, then $f = \inf_{i \in I} f_i$ is u.s.c.

EXERCISE 3. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let f be an element of $L^1_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega), \mu)$, such that $f \geq 0$.

- 1. Let $(s_n)_{n\geq 1}$ be a sequence of simple functions on $(\Omega, \mathcal{B}(\Omega))$ such that $s_n \uparrow f$. Define $t_1 = s_1$ and $t_n = s_n s_{n-1}$ for all $n \geq 2$. Show that t_n is a simple function on $(\Omega, \mathcal{B}(\Omega))$, for all $n \geq 1$.
- 2. Show that f can be written as:

$$f = \sum_{n=1}^{+\infty} \alpha_n 1_{A_n}$$

where $\alpha_n \in \mathbf{R}^+ \setminus \{0\}$ and $A_n \in \mathcal{B}(\Omega)$, for all $n \geq 1$.

- 3. Show that $\mu(A_n) < +\infty$, for all n > 1.
- 4. Show that there exist K_n compact and V_n open in Ω such that:

$$K_n \subseteq A_n \subseteq V_n$$
 , $\mu(V_n \setminus K_n) \le \frac{\epsilon}{\alpha - 2^{n+1}}$

for all $\epsilon > 0$ and $n \geq 1$.

5. Show the existence of $N \geq 1$ such that:

$$\sum_{n=N+1}^{+\infty} \alpha_n \mu(A_n) \le \frac{\epsilon}{2}$$

- 6. Define $u = \sum_{n=1}^{N} \alpha_n 1_{K_n}$. Show that u is u.s.c.
- 7. Define $v = \sum_{n=1}^{+\infty} \alpha_n 1_{V_n}$. Show that v is l.s.c.
- 8. Show that we have $0 \le u \le f \le v$.
- 9. Show that we have:

$$v = u + \sum_{n=N+1}^{+\infty} \alpha_n 1_{K_n} + \sum_{n=1}^{+\infty} \alpha_n 1_{V_n \setminus K_n}$$

- 10. Show that $\int v d\mu \leq \int u d\mu + \epsilon < +\infty$.
- 11. Show that $u \in L^1_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega), \mu)$.

- 12. Explain why v may fail to be in $L^1_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega), \mu)$.
- 13. Show that v is μ -a.s. equal to an element of $L^1_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega), \mu)$.
- 14. Show that $\int (v-u)d\mu \leq \epsilon$.
- 15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ and f be an element of $L^1_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega), \mu)$. Then, for all $\epsilon > 0$, there exist measurable maps $u, v : \Omega \to \overline{\mathbf{R}}$, which are μ -a.s. equal to elements of $L^1_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega), \mu)$, such that $u \leq f \leq v$, u is u.s.c, v is l.s.c, and furthermore:

$$\int (v-u)d\mu \le \epsilon$$

Definition 116 Let (Ω, \mathcal{T}) be a topological space. We say that (Ω, \mathcal{T}) is **connected**, if and only if the only subsets of Ω which are both open and closed are Ω and \emptyset .

EXERCISE 4. Let (Ω, \mathcal{T}) be a topological space.

- 1. Show that (Ω, \mathcal{T}) is connected if and only if whenever $\Omega = A \uplus B$ where A, B are disjoint open sets, we have $A = \emptyset$ or $B = \emptyset$.
- 2. Show that (Ω, \mathcal{T}) is connected if and only if whenever $\Omega = A \uplus B$ where A, B are disjoint closed sets, we have $A = \emptyset$ or $B = \emptyset$.

Definition 117 Let (Ω, \mathcal{T}) be a topological space, and $A \subseteq \Omega$. We say that A is a **connected subset** of Ω , if and only if the induced topological space $(A, \mathcal{T}_{|A})$ is connected.

EXERCISE 5. Let A be open and closed in **R**, with $A \neq \emptyset$ and $A^c \neq \emptyset$.

- 1. Let $x \in A^c$. Show that $A \cap [x, +\infty[\text{ or } A \cap] -\infty, x]$ is non-empty.
- 2. Suppose $B=A\cap[x,+\infty[\neq\emptyset]$. Show that B is closed and that we have $B=A\cap]x,+\infty[$. Conclude that B is also open.
- 3. Let $b = \inf B$. Show that $b \in B$ (and in particular $b \in \mathbf{R}$).
- 4. Show the existence of $\epsilon > 0$ such that $|b \epsilon, b + \epsilon| \subseteq B$.
- 5. Conclude with the following:

Theorem 95 The topological space $(\mathbf{R}, \mathcal{I}_{\mathbf{R}})$ is connected.

EXERCISE 6. Let (Ω, \mathcal{T}) be a topological space and $A \subseteq \Omega$ be a connected subset of Ω . Let B be a subset of Ω such that $A \subseteq B \subseteq \overline{A}$. We assume that $B = V_1 \uplus V_2$ where V_1, V_2 are disjoint open sets in B.

1. Show there is U_1, U_2 open in Ω , with $V_1 = B \cap U_1, V_2 = B \cap U_2$.

- 2. Show that $A \cap U_1 = \emptyset$ or $A \cap U_2 = \emptyset$.
- 3. Suppose that $A \cap U_1 = \emptyset$. Show that $\bar{A} \subseteq U_1^c$.
- 4. Show then that $V_1 = B \cap U_1 = \emptyset$.
- 5. Conclude that B and \bar{A} are both connected subsets of Ω .

Exercise 7. Prove the following:

Theorem 96 Let (Ω, \mathcal{T}) , (Ω', \mathcal{T}') be two topological spaces, and f be a continuous map, $f: \Omega \to \Omega'$. If (Ω, \mathcal{T}) is connected, then $f(\Omega)$ is a connected subset of Ω' .

Definition 118 Let $A \subseteq \overline{\mathbf{R}}$. We say that A is an **interval**, if and only if for all $x, y \in A$ with $x \leq y$, we have $[x, y] \subseteq A$, where:

$$[x,y] \stackrel{\triangle}{=} \{ z \in \bar{\mathbf{R}} : x \le z \le y \}$$

EXERCISE 8. Let $A \subseteq \bar{\mathbf{R}}$.

1. If A is an interval, and $\alpha = \inf A$, $\beta = \sup A$, show that:

$$]\alpha,\beta[\subseteq A\subseteq [\alpha,\beta]$$

- 2. Show that A is an interval if and only if, it is of the form $[\alpha, \beta]$, $[\alpha, \beta[,]\alpha, \beta]$ or $]\alpha, \beta[$, for some $\alpha, \beta \in \bar{\mathbf{R}}$.
- 3. Show that an interval of the form $]-\infty,\alpha[$, where $\alpha \in \mathbf{R}$, is homeomorphic to $]-1,\alpha'[$, for some $\alpha' \in \mathbf{R}$.
- 4. Show that an interval of the form $]\alpha, +\infty[$, where $\alpha \in \mathbf{R}$, is homeomorphic to $]\alpha', 1[$, for some $\alpha' \in \mathbf{R}$.
- 5. Show that an interval of the form $]\alpha, \beta[$, where $\alpha, \beta \in \mathbf{R}$ and $\alpha < \beta$, is homeomorphic to]-1,1[.
- 6. Show that]-1,1[is homeomorphic to \mathbf{R} .
- 7. Show an non-empty open interval in \mathbf{R} , is homeomorphic to \mathbf{R} .

- 8. Show that an open interval in **R**, is a connected subset of **R**.
- 9. Show that an interval in **R**, is a connected subset of **R**.

EXERCISE 9. Let $A \subseteq \mathbf{R}$ be a non-empty connected subset of \mathbf{R} , and $\alpha = \inf A$, $\beta = \sup A$. We assume there exists $x_0 \in A^c \cap [\alpha, \beta[$.

- 1. Show that $A \cap [x_0, +\infty[$ or $A \cap]-\infty, x_0[$ is empty.
- 2. Show that $A \cap]x_0, +\infty[=\emptyset]$ leads to a contradiction.
- 3. Show that $]\alpha, \beta[\subseteq A \subseteq [\alpha, \beta].$
- 4. Show the following:

Theorem 97 For all $A \subseteq \mathbf{R}$, A is a connected subset of \mathbf{R} , if and only if A is an interval.

EXERCISE 10. Prove the following:

Theorem 98 Let $f: \Omega \to \mathbf{R}$ be a continuous map, where (Ω, \mathcal{T}) is a connected topological space. Let $a, b \in \Omega$ such that $f(a) \leq f(b)$. Then, for all $z \in [f(a), f(b)]$, there exists $x \in \Omega$ such that z = f(x).

EXERCISE 11. Let $a, b \in \mathbf{R}$, a < b, and $f : [a, b] \to \mathbf{R}$ be a map such that f'(x) exists for all $x \in [a, b]$.

- 1. Show that $f':([a,b],\mathcal{B}([a,b]))\to (\mathbf{R},\mathcal{B}(\mathbf{R}))$ is measurable.
- 2. Show that $f' \in L^1_{\mathbf{R}}([a,b],\mathcal{B}([a,b]),dx)$ is equivalent to:

$$\int_{a}^{b} |f'(t)|dt < +\infty$$

3. We assume from now on that $f' \in L^1_{\mathbf{R}}([a, b], \mathcal{B}([a, b]), dx)$. Given $\epsilon > 0$, show the existence of $g : [a, b] \to \overline{\mathbf{R}}$, almost surely equal

to an element of $L^1_{\mathbf{R}}([a,b],\mathcal{B}([a,b]),dx)$, such that $f' \leq g$ and g is l.s.c, with:

$$\int_{a}^{b} g(t)dt \le \int_{a}^{b} f'(t)dt + \epsilon$$

- 4. By considering $g + \alpha$ for some $\alpha > 0$, show that without loss of generality, we can assume that f' < g with the above inequality still holding.
- 5. We define the complex measure $\nu = \int g dx \in M^1([a,b],\mathcal{B}([a,b]))$. Show that:

$$\forall \epsilon' > 0 \ , \ \exists \delta > 0 \ , \ \forall E \in \mathcal{B}([a,b]) \ , \ dx(E) \leq \delta \ \Rightarrow \ |\nu(E)| < \epsilon'$$

6. For all $\eta > 0$ and $x \in [a, b]$, we define:

$$F_{\eta}(x) \stackrel{\triangle}{=} \int_{a}^{x} g(t)dt - f(x) + f(a) + \eta(x - a)$$

Show that $F_n:[a,b]\to\mathbf{R}$ is a continuous map.

- 7. η being fixed, let $x = \sup F_{\eta}^{-1}(\{0\})$. Show that $x \in [a, b]$ and $F_{\eta}(x) = 0$.
- 8. We assume that $x \in [a, b[$. Show the existence of $\delta > 0$ such that for all $t \in]x, x + \delta[\cap [a, b]$, we have:

$$f'(x) < g(t)$$
 and $\frac{f(t) - f(x)}{t - x} < f'(x) + \eta$

- 9. Show that for all $t \in]x, x + \delta[\cap[a, b]]$, we have $F_{\eta}(t) > F_{\eta}(x) = 0$.
- 10. Show that there exists t_0 such that $x < t_0 < b$ and $F_{\eta}(t_0) > 0$.
- 11. Show that $F_{\eta}(b) < 0$ leads to a contradiction.
- 12. Conclude that $F_{\eta}(b) \geq 0$, even if x = b.
- 13. Show that $f(b) f(a) \leq \int_a^b f'(t)dt$, and conclude:

Theorem 99 (Fundamental Calculus) Let $a, b \in \mathbf{R}$, a < b, and $f : [a,b] \to \mathbf{R}$ be a map which is differentiable at every point of [a,b], and such that:

$$\int_{a}^{b} |f'(t)| dt < +\infty$$

Then, we have:

$$f(b) - f(a) = \int_a^b f'(t)dt$$

EXERCISE 12. Let $\alpha > 0$, and $k_{\alpha} : \mathbf{R}^n \to \mathbf{R}^n$ defined by $k_{\alpha}(x) = \alpha x$.

- 1. Show that $k_{\alpha}: (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ is measurable.
- 2. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$, we have:

$$dx(\{k_{\alpha} \in B\}) = \frac{1}{\alpha^n} dx(B)$$

3. Show that for all $\epsilon > 0$ and $x \in \mathbf{R}^n$:

$$dx(B(x,\epsilon)) = \epsilon^n dx(B(0,1))$$

Definition 119 Let μ be a complex measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, $n \geq 1$, with total variation $|\mu|$. We call **maximal function** of μ , the map $M\mu: \mathbf{R}^n \to [0, +\infty]$, defined by:

$$\forall x \in \mathbf{R}^n , (M\mu)(x) \stackrel{\triangle}{=} \sup_{\epsilon > 0} \frac{|\mu|(B(x,\epsilon))}{dx(B(x,\epsilon))}$$

where $B(x,\epsilon)$ is the open ball in \mathbb{R}^n , of center x and radius ϵ , with respect to the usual metric of \mathbb{R}^n .

EXERCISE 13. Let μ be a complex measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.

- 1. Let $\lambda \in \mathbf{R}$. Show that if $\lambda < 0$, then $\{\lambda < M\mu\} = \mathbf{R}^n$.
- 2. Show that if $\lambda = 0$, then $\{\lambda < M\mu\} = \mathbf{R}^n$ if $\mu \neq 0$, and $\{\lambda < M\mu\}$ is the empty set if $\mu = 0$.
- 3. Suppose $\lambda > 0$. Let $x \in \{\lambda < M\mu\}$. Show the existence of $\epsilon > 0$ such that $|\mu|(B(x,\epsilon)) = tdx(B(x,\epsilon))$, for some $t > \lambda$.

- 4. Show the existence of $\delta > 0$ such that $(\epsilon + \delta)^n < \epsilon^n t/\lambda$.
- 5. Show that if $y \in B(x, \delta)$, then $B(x, \epsilon) \subseteq B(y, \epsilon + \delta)$.
- 6. Show that if $y \in B(x, \delta)$, then:

$$|\mu|(B(y,\epsilon+\delta)) \ge \frac{\epsilon^n t}{(\epsilon+\delta)^n} dx (B(y,\epsilon+\delta)) > \lambda dx (B(y,\epsilon+\delta))$$

7. Conclude that $B(x, \delta) \subseteq \{\lambda < M\mu\}$, and that the maximal function $M\mu : \mathbf{R}^n \to [0, +\infty]$ is l.s.c, and therefore measurable.

EXERCISE 14. Let $B_i = B(x_i, \epsilon_i)$, i = 1, ..., N, $N \ge 1$, be a finite collection of open balls in \mathbb{R}^n . Assume without loss of generality that $\epsilon_N \le ... \le \epsilon_1$. We define a sequence (J_k) of sets by $J_0 = \{1, ..., N\}$ and for all $k \ge 1$:

$$J_k \stackrel{\triangle}{=} \left\{ \begin{array}{l} J_{k-1} \cap \{j: \ j > i_k \ , \ B_j \cap B_{i_k} = \emptyset \} & \text{if } J_{k-1} \neq \emptyset \\ \emptyset & \text{if } J_{k-1} = \emptyset \end{array} \right.$$

where we have put $i_k = \min J_{k-1}$, whenever $J_{k-1} \neq \emptyset$.

- 1. Show that if $J_{k-1} \neq \emptyset$ then $J_k \subset J_{k-1}$ (strict inclusion), $k \geq 1$.
- 2. Let $p = \min\{k \geq 1 : J_k = \emptyset\}$. Show that p is well-defined.
- 3. Let $S = \{i_1, \dots, i_p\}$. Explain why S is well defined.
- 4. Suppose that $1 \le k < k' \le p$. Show that $i_{k'} \in J_k$.
- 5. Show that $(B_i)_{i \in S}$ is a family of pairwise disjoint open balls.
- 6. Let $i \in \{1, ..., N\} \setminus S$, and define k_0 to be the minimum of the set $\{k \in \mathbb{N}_p : i \notin J_k\}$. Explain why k_0 is well-defined.
- 7. Show that $i \in J_{k_0-1}$ and $i_{k_0} \leq i$.
- 8. Show that $B_i \cap B_{i_{k_0}} \neq \emptyset$.
- 9. Show that $B_i \subseteq B(x_{i_{k_0}}, 3\epsilon_{i_{k_0}})$.

10. Conclude that there exists a subset S of $\{1, \ldots, N\}$ such that $(B_i)_{i \in S}$ is a family of pairwise disjoint balls, and:

$$\bigcup_{i=1}^{N} B(x_i, \epsilon_i) \subseteq \bigcup_{i \in S} B(x_i, 3\epsilon_i)$$

11. Show that:

$$dx\left(\bigcup_{i=1}^{N} B(x_i, \epsilon_i)\right) \le 3^n \sum_{i \in S} dx (B(x_i, \epsilon_i))$$

EXERCISE 15. Let μ be a complex measure on \mathbb{R}^n . Let $\lambda > 0$ and K be a non-empty compact subset of $\{\lambda < M\mu\}$.

1. Show that K can be covered by a finite collection $B_i = B(x_i, \epsilon_i)$, i = 1, ..., N of open balls, such that:

$$\forall i = 1, \dots, N , \lambda dx(B_i) < |\mu|(B_i)$$

2. Show the existence of $S \subseteq \{1, \ldots, N\}$ such that:

$$dx(K) \le 3^n \lambda^{-1} |\mu| \left(\bigcup_{i \in S} B(x_i, \epsilon_i) \right)$$

- 3. Show that $dx(K) \leq 3^n \lambda^{-1} \|\mu\|$
- 4. Conclude with the following:

Theorem 100 Let μ be a complex measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, $n \geq 1$, with maximal function $M\mu$. Then, for all $\lambda \in \mathbf{R}^+ \setminus \{0\}$, we have:

$$dx(\{\lambda < M\mu\}) \le 3^n \lambda^{-1} \|\mu\|$$

Definition 120 Let $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx)$, and μ be the complex measure $\mu = \int f dx$ on \mathbf{R}^n , $n \geq 1$. We call **maximal function** of f, denoted Mf, the maximal function $M\mu$ of μ .

EXERCISE 16. Let $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx), n \geq 1$.

1. Show that for all $x \in \mathbf{R}^n$:

$$(Mf)(x) = \sup_{\epsilon > 0} \frac{1}{dx(B(x,\epsilon))} \int_{B(x,\epsilon)} |f| dx$$

2. Show that for all $\lambda > 0$, $dx(\{\lambda < Mf\}) \le 3^n \lambda^{-1} ||f||_1$.

Definition 121 Let $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx)$, $n \geq 1$. We say that $x \in \mathbf{R}^n$ is a Lebesgue point of f, if and only if we have:

$$\lim_{\epsilon \downarrow \downarrow 0} \frac{1}{dx(B(x,\epsilon))} \int_{B(x,\epsilon)} |f(y) - f(x)| dy = 0$$

EXERCISE 17. Let $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx), n \geq 1$.

1. Show that if f is continuous at $x \in \mathbb{R}^n$, then x is a Lebesgue point of f.

2. Show that if $x \in \mathbf{R}^n$ is a Lebesgue point of f, then:

$$f(x) = \lim_{\epsilon \downarrow \downarrow 0} \frac{1}{dx(B(x,\epsilon))} \int_{B(x,\epsilon)} f(y) dy$$

EXERCISE 18. Let $n \ge 1$ and $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx)$. For all $\epsilon > 0$ and $x \in \mathbf{R}^n$, we define:

$$(T_{\epsilon}f)(x) \stackrel{\triangle}{=} \frac{1}{dx(B(x,\epsilon))} \int_{B(x,\epsilon)} |f(y) - f(x)| dy$$

and we put, for all $x \in \mathbf{R}^n$:

$$(Tf)(x) \stackrel{\triangle}{=} \limsup_{\epsilon \downarrow \downarrow 0} (T_{\epsilon}f)(x) \stackrel{\triangle}{=} \inf_{\epsilon > 0} \sup_{u \in]0, \epsilon[} (T_{u}f)(x)$$

1. Given $\eta > 0$, show the existence of $g \in C^c_{\mathbf{C}}(\mathbf{R}^n)$ such that:

$$||f - g||_1 \le \eta$$

2. Let h = f - g. Show that for all $\epsilon > 0$ and $x \in \mathbb{R}^n$:

$$(T_{\epsilon}h)(x) \leq \frac{1}{dx(B(x,\epsilon))} \int_{B(x,\epsilon)} |h| dx + |h(x)|$$

- 3. Show that $Th \leq Mh + |h|$.
- 4. Show that for all $\epsilon > 0$, we have $T_{\epsilon}f \leq T_{\epsilon}g + T_{\epsilon}h$.
- 5. Show that $Tf \leq Tq + Th$.
- 6. Using the continuity of g, show that Tg = 0.
- 7. Show that $Tf \leq Mh + |h|$.
- 8. Show that for all $\alpha > 0$, $\{2\alpha < Tf\} \subseteq \{\alpha < Mh\} \cup \{\alpha < |h|\}$.
- 9. Show that $dx(\{\alpha < |h|\}) \le \alpha^{-1} ||h||_1$.
- 10. Conclude that for all $\alpha > 0$ and $\eta > 0$, there is $N_{\alpha,\eta} \in \mathcal{B}(\mathbf{R}^n)$ such that $\{2\alpha < Tf\} \subseteq N_{\alpha,\eta}$ and $dx(N_{\alpha,\eta}) \leq \eta$.

- 11. Show that for all $\alpha > 0$, there exists $N_{\alpha} \in \mathcal{B}(\mathbf{R}^n)$ such that $\{2\alpha < Tf\} \subseteq N_{\alpha} \text{ and } dx(N_{\alpha}) = 0.$
- 12. Show there is $N \in \mathcal{B}(\mathbf{R}^n)$, dx(N) = 0, such that $\{Tf > 0\} \subseteq N$.
- 13. Conclude that Tf = 0, dx-a.s.
- 14. Conclude with the following:

Theorem 101 Let $f \in L^1_{\mathbf{C}}(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n), dx), n \geq 1$. Then, dx-almost surely, any $x \in \mathbf{R}^n$ is a Lebesgue points of f, i.e.

$$dx$$
-a.s., $\lim_{\epsilon \downarrow \downarrow 0} \frac{1}{dx(B(x,\epsilon))} \int_{B(x,\epsilon)} |f(y) - f(x)| dy = 0$

EXERCISE 19. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega' \in \mathcal{F}$. We define $\mathcal{F}' = \mathcal{F}_{|\Omega'|}$ and $\mu' = \mu_{|\mathcal{F}'|}$. For all maps $f : \Omega' \to [0, +\infty]$ (or

 \mathbf{C}), we define $\tilde{f}: \Omega \to [0, +\infty]$ (or \mathbf{C}), by:

$$\tilde{f}(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} f(\omega) & \text{if} & \omega \in \Omega' \\ 0 & \text{if} & \omega \notin \Omega' \end{array} \right.$$

- 1. Show that $\mathcal{F}' \subseteq \mathcal{F}$ and conclude that μ' is therefore a well-defined measure on (Ω', \mathcal{F}') .
- 2. Let $A \in \mathcal{F}'$ and $1'_A$ be the characteristic function of A defined on Ω' . Let 1_A be the characteristic function of A defined on Ω . Show that $\tilde{1}'_A = 1_A$.
- 3. Let $f:(\Omega',\mathcal{F}')\to [0,+\infty]$ be a non-negative and measurable map. Show that $\tilde{f}:(\Omega,\mathcal{F})\to [0,+\infty]$ is also non-negative and measurable, and that we have:

$$\int_{\Omega'} f d\mu' = \int_{\Omega} \tilde{f} d\mu$$

4. Let $f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', \mu')$. Show that $\tilde{f} \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, and:

$$\int_{\Omega'} f d\mu' = \int_{\Omega} \tilde{f} d\mu$$

Definition 122 $b: \mathbf{R}^+ \to \mathbf{C}$ is **absolutely continuous**, if and only if b is right-continuous of finite variation, and b is absolutely continuous with respect to a(t) = t.

EXERCISE 20. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a map.

- 1. Show that b is absolutely continuous, if and only if there is $f \in L^{1,\text{loc}}_{\mathbf{C}}(t)$ such that $b(t) = \int_0^t f(s)ds$, for all $t \in \mathbf{R}^+$.
- 2. Show that b absolutely continuous \Rightarrow b continuous with b(0) = 0.

EXERCISE 21. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be an absolutely continuous map. Let $f \in L^{1,\text{loc}}_{\mathbf{C}}(t)$ be such that b = f.t. For all $n \geq 1$, we define $f_n: \mathbf{R} \to \mathbf{C}$ by:

$$f_n(t) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} f(t)1_{[0,n]}(t) & \text{if} & t \in \mathbf{R}^+ \\ 0 & \text{if} & t < 0 \end{array} \right.$$

1. Let $n \geq 1$. Show $f_n \in L^1_{\mathbf{C}}(\mathbf{R}, \mathcal{B}(\mathbf{R}), dx)$ and for all $t \in [0, n]$:

$$b(t) = \int_0^t f_n dx$$

- 2. Show the existence of $N_n \in \mathcal{B}(\mathbf{R})$ such that $dx(N_n) = 0$, and for all $t \in N_n^c$, t is a Lebesgue point of f_n .
- 3. Show that for all $t \in \mathbf{R}$, and $\epsilon > 0$:

$$\frac{1}{\epsilon} \int_{t}^{t+\epsilon} |f_n(s) - f_n(t)| ds \leq \frac{2}{dx(B(t,\epsilon))} \int_{B(t,\epsilon)} |f_n(s) - f_n(t)| ds$$

4. Show that for all $t \in N_n^c$, we have:

$$\lim_{\epsilon \downarrow \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_n(s) ds = f_n(t)$$

5. Show similarly that for all $t \in N_n^c$, we have:

$$\lim_{\epsilon\downarrow\downarrow0}\frac{1}{\epsilon}\int_{t-\epsilon}^t f_n(s)ds=f_n(t)$$

- 6. Show that for all $t \in N_n^c \cap [0, n[, b'(t) \text{ exists and } b'(t) = f(t).$
- 7. Show the existence of $N \in \mathcal{B}(\mathbf{R}^+)$, such that dx(N) = 0, and:

$$\forall t \in N^c$$
, $b'(t)$ exists with $b'(t) = f(t)$

8. Conclude with the following:

 $^{^{1}}b'(0)$ being a r.h.s derivative only.

Theorem 102 A map $b : \mathbf{R}^+ \to \mathbf{C}$ is absolutely continuous, if and only if there exists $f \in L^{1,loc}_{\mathbf{C}}(t)$ such that:

$$\forall t \in \mathbf{R}^+, \ b(t) = \int_0^t f(s)ds$$

in which case, b is almost surely differentiable with $b'=f\ dx$ -a.s.