14. Maps of Finite Variation

Definition 108 We call **total variation** of a map $b : \mathbf{R}^+ \to \mathbf{C}$ the map $|b| : \mathbf{R}^+ \to [0, +\infty]$ defined as:

$$\forall t \in \mathbf{R}^+ \ , \ |b|(t) \stackrel{\triangle}{=} |b(0)| + \sup \sum_{i=1}^n |b(t_i) - b(t_{i-1})|$$

where the 'sup' is taken over all finite $t_0 \leq ... \leq t_n$ in [0,t], $n \geq 1$. We say that b is of finite variation, if and only if:

$$\forall t \in \mathbf{R}^+$$
, $|b|(t) < +\infty$

We say that b is of bounded variation, if and only if:

$$\sup_{t \in \mathbf{R}^+} |b|(t) < +\infty$$

Warning: The notation |b| can be misleading: it can refer to the map $t \to |b(t)|$ (the modulus), or to the map $t \to |b|(t)$ (the total variation).

EXERCISE 1. Let $a: \mathbf{R}^+ \to \mathbf{R}^+$ be non-decreasing with $a(0) \ge 0$.

- 1. Show that |a| = a and a is of finite variation.
- 2. Show that the limit $\lim_{t\uparrow+\infty} a(t)$, denoted $a(\infty)$, exists in $\bar{\mathbf{R}}$.
- 3. Show that a is of bounded variation if and only if $a(\infty) < +\infty$.

EXERCISE 2. Let $b = b_1 + ib_2 : \mathbf{R}^+ \to \mathbf{C}$ be a map, b_1, b_2 real-valued.

- 1. Show that $|b_1| \leq |b|$ and $|b_2| \leq |b|$.
- 2. Show that $|b| \leq |b_1| + |b_2|$.
- 3. Show that b is of finite variation if and only if b_1 , b_2 are.
- 4. Show that b is of bounded variation if and only if b_1 , b_2 are.
- 5. Show that |b|(0) = |b(0)|.

EXERCISE 3. Let $b: \mathbf{R}^+ \to \mathbf{R}$ be differentiable, such that b' is bounded on each compact interval of \mathbf{R}^+ . Show that b is of finite variation.

EXERCISE 4. Show that if $b: \mathbf{R}^+ \to \mathbf{C}$ is of class C^1 , i.e. continuous and differentiable with continuous derivative, then b is of finite variation.

EXERCISE 5. Let $f: (\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+)) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a measurable map, with $\int_0^t |f(s)| ds < +\infty$ for all $t \in \mathbf{R}^+$. Let $b: \mathbf{R}^+ \to \mathbf{C}$ defined by:

$$\forall t \in \mathbf{R}^+ , \ b(t) \stackrel{\triangle}{=} \int_{\mathbf{R}^+} f 1_{[0,t]} ds$$

1. Show that b is of finite variation and:

$$\forall t \in \mathbf{R}^+ \ , \ |b|(t) \le \int_0^t |f(s)| ds$$

2. Show that $f \in L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), ds) \Rightarrow b$ is of bounded variation.

EXERCISE 6. Show that if $b, b' : \mathbf{R}^+ \to \mathbf{C}$ are maps of finite variation, and $\alpha \in \mathbf{C}$, then $b + \alpha b'$ is also a map of finite variation. Prove the same result when the word 'finite' is replaced by 'bounded'.

EXERCISE 7. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a map. For all $t \in \mathbf{R}^+$, let $\mathcal{S}(t)$ be the set of all finite subsets A of [0,t], with $\operatorname{card} A \geq 2$. For all $A \in \mathcal{S}(t)$, we define:

$$S(A) \stackrel{\triangle}{=} \sum_{i=1}^{n} |b(t_i) - b(t_{i-1})|$$

where it is understood that t_0, \ldots, t_n are such that:

$$t_0 < t_1 < \ldots < t_n \text{ and } A = \{t_0, \ldots, t_n\} \subseteq [0, t]$$

1. Show that for all $t \in \mathbb{R}^+$, if $s_0 \leq \ldots \leq s_p \ (p \geq 1)$ is a finite

sequence in [0, t], then if:

$$S \stackrel{\triangle}{=} \sum_{j=1}^{p} |b(s_j) - b(s_{j-1})|$$

either S = 0 or S = S(A) for some $A \in \mathcal{S}(t)$.

2. Conclude that:

$$\forall t \in \mathbf{R}^+ \ , \ |b|(t) = |b(0)| + \sup\{S(A) : \ A \in \mathcal{S}(t)\}$$

- 3. Let $A \in \mathcal{S}(t)$ and $s \in [0, t]$. Show that $S(A) \leq S(A \cup \{s\})$.
- 4. Let $A, B \in \mathcal{S}(t)$. Show that:

$$A \subseteq B \Rightarrow S(A) \le S(B)$$

5. Show that if $t_0 \leq \ldots \leq t_n$, $n \geq 1$, and $s_0 \leq \ldots \leq s_p$, $p \geq 1$, are finite sequences in [0, t] such that:

$$\{t_0,\ldots,t_n\}\subseteq\{s_0,\ldots,s_p\}$$

then:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le \sum_{j=1}^{p} |b(s_j) - b(s_{j-1})|$$

EXERCISE 8. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be of finite variation. Let $s, t \in \mathbf{R}^+$, with $s \leq t$. We define:

$$\delta \stackrel{\triangle}{=} \sup \sum_{i=1}^{n} |b(t_i) - b(t_{i-1})|$$

where the 'sup' is taken over all finite $t_0 \leq \ldots \leq t_n$, $n \geq 1$, in [s, t].

1. Let $s_0 \leq \ldots \leq s_p$ and $t_0 \leq \ldots \leq t_n$ be finite sequences in [0, s] and [s, t] respectively, where $n, p \geq 1$. Show that:

$$\sum_{i=1}^{p} |b(s_j) - b(s_{j-1})| + \sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le |b|(t) - |b(0)|$$

2. Show that $\delta \leq |b|(t) - |b|(s)$.

3. Let $t_0 \leq \ldots \leq t_n$ be a finite sequence in [0, t], where $n \geq 1$, and suppose that $s = t_j$ for some 0 < j < n. Show that:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le |b|(s) - |b(0)| + \delta \tag{1}$$

- 4. Show that inequality (1) holds, for all $t_0 \leq \ldots \leq t_n$ in [0, t].
- 5. Prove the following:

Theorem 80 Let $b : \mathbf{R}^+ \to \mathbf{C}$ be a map of finite variation. Then, for all $s, t \in \mathbf{R}^+$, $s \le t$, we have:

$$|b|(t) - |b|(s) = \sup \sum_{i=1}^{n} |b(t_i) - b(t_{i-1})|$$

where the 'sup' is taken over all finite $t_0 \leq \ldots \leq t_n$, $n \geq 1$, in [s,t].

EXERCISE 9. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a map of finite variation. Show that |b| is non-decreasing with $|b|(0) \ge 0$, and ||b|| = |b|.

Definition 109 Let $b : \mathbb{R}^+ \to \mathbb{R}$ be a map of finite variation. Let:

$$|b|^{+} \stackrel{\triangle}{=} \frac{1}{2}(|b| + b)$$
$$|b|^{-} \stackrel{\triangle}{=} \frac{1}{2}(|b| - b)$$

 $|b|^+$, $|b|^-$ are respectively the **positive**, **negative variation** of b.

EXERCISE 10. Let $b: \mathbf{R}^+ \to \mathbf{R}$ be a map of finite variation.

- 1. Show that $|b| = |b|^+ + |b|^-$ and $b = |b|^+ |b|^-$.
- 2. Show that $|b|^+(0) = b^+(0) \ge 0$ and $|b|^-(0) = b^-(0) \ge 0$.
- 3. Show that for all $s, t \in \mathbb{R}^+$, $s \leq t$, we have:

$$|b(t) - b(s)| \le |b|(t) - |b|(s)$$

4. Show that $|b|^+$ and $|b|^-$ are non-decreasing.

EXERCISE 11. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be of finite variation. Show the existence of $b_1, b_2, b_3, b_4: \mathbf{R}^+ \to \mathbf{R}^+$, non-decreasing with $b_i(0) \geq 0$, such that $b = b_1 - b_2 + i(b_3 - b_4)$. Show conversely that if $b: \mathbf{R}^+ \to \mathbf{C}$ is a map with such decomposition, then it is of finite variation.

EXERCISE 12. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of finite variation, and $x_0 \in \mathbf{R}^+$.

- 1. Show that the limit $|b|(x_0+) = \lim_{t\downarrow\downarrow x_0} |b|(t)$ exists in **R** and is equal to $\inf_{x_0 < t} |b|(t)$.
- 2. Show that $|b|(x_0) \leq |b|(x_0+)$.
- 3. Given $\epsilon > 0$, show the existence of $y_0 \in \mathbf{R}^+$, $x_0 < y_0$, such that:

$$u \in]x_0, y_0] \Rightarrow |b(u) - b(x_0)| \le \epsilon/2$$

$$u \in]x_0, y_0] \Rightarrow |b|(y_0) - |b|(u) \le \epsilon/2$$

EXERCISE 13. Further to exercise (12), let $t_0 \leq \ldots \leq t_n$, $n \geq 1$, be a finite sequence in $[0, y_0]$, for which there exists j with 0 < j < n - 1, $x_0 = t_j$ and $x_0 < t_{j+1}$.

- 1. Show that $\sum_{i=1}^{j} |b(t_i) b(t_{i-1})| \le |b|(x_0) |b(0)|$.
- 2. Show that $|b(t_{i+1}) b(t_i)| \le \epsilon/2$.
- 3. Show that $\sum_{i=j+2}^{n} |b(t_i) b(t_{i-1})| \le |b|(y_0) |b|(t_{j+1}) \le \epsilon/2$.
- 4. Show that for all finite sequences $t_0 \leq \ldots \leq t_n, n \geq 1$, in $[0, y_0]$:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le |b|(x_0) - |b(0)| + \epsilon$$

- 5. Show that $|b|(y_0) \leq |b|(x_0) + \epsilon$.
- 6. Show that $|b|(x_0+) \leq |b|(x_0)$ and that |b| is right-continuous.

EXERCISE 14. Let $b : \mathbf{R}^+ \to \mathbf{C}$ be a left-continuous map of finite variation, and let $x_0 \in \mathbf{R}^+ \setminus \{0\}$.

- 1. Show that the limit $|b|(x_0-) = \lim_{t \uparrow \uparrow x_0} |b|(t)$ exists in **R**, and is equal to $\sup_{t < x_0} |b|(t)$.
- 2. Show that $|b|(x_0-) \le |b|(x_0)$.
- 3. Given $\epsilon > 0$, show the existence of $y_0 \in [0, x_0]$, such that:

$$u \in [y_0, x_0[\Rightarrow |b(x_0) - b(u)| \le \epsilon/2$$

 $u \in [y_0, x_0[\Rightarrow |b|(u) - |b|(y_0) \le \epsilon/2$

EXERCISE 15. Further to exercise (14), let $t_0 \leq \ldots \leq t_n$, $n \geq 1$, be a finite sequence in $[0, x_0]$, such that $y_0 = t_j$ for some 0 < j < n - 1, and $x_0 = t_n$. We denote $k = \max\{i : j \leq i, t_i < x_0\}$.

- 1. Show that $j \leq k \leq n-1$ and $t_k \in [y_0, x_0[$.
- 2. Show that $\sum_{i=1}^{j} |b(t_i) b(t_{i-1})| \le |b|(y_0) |b(0)|$.
- 3. Show that $\sum_{i=j+1}^{k} |b(t_i) b(t_{i-1})| \le |b|(t_k) |b|(y_0) \le \epsilon/2$, where if j = k, the corresponding sum is zero.
- 4. Show that $\sum_{i=k+1}^{n} |b(t_i) b(t_{i-1})| = |b(x_0) b(t_k)| \le \epsilon/2$.
- 5. Show that for all finite sequences $t_0 \leq \ldots \leq t_n, n \geq 1$, in $[0, x_0]$:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le |b|(y_0) - |b(0)| + \epsilon$$

- 6. Show that $|b|(x_0) \leq |b|(y_0) + \epsilon$.
- 7. Show that $|b|(x_0) \leq |b|(x_0-)$ and that |b| is left-continuous.
- 8. Prove the following:

Theorem 81 Let $b : \mathbb{R}^+ \to \mathbb{C}$ be a map of finite variation. Then:

b is right-continuous \Rightarrow |b| is right-continuous b is left-continuous \Rightarrow |b| is left-continuous b is continuous \Rightarrow |b| is continuous

EXERCISE 16. Let $b: \mathbf{R}^+ \to \mathbf{R}$ be an **R**-valued map of finite variation.

- 1. Show that if b is right-continuous, then so are $|b|^+$ and $|b|^-$.
- 2. State and prove similar results for left-continuity and continuity.

EXERCISE 17. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of finite variation. Show the existence of $b_1, b_2, b_3, b_4: \mathbf{R}^+ \to \mathbf{R}^+$, right-continuous and non-decreasing maps with $b_i(0) \geq 0$, such that:

$$b = b_1 - b_2 + i(b_3 - b_4)$$

EXERCISE 18. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map. Let $t \in \mathbf{R}^+$. For all $p \ge 1$, we define:

$$S_p \stackrel{\triangle}{=} |b(0)| + \sum_{k=1}^{2^p} |b(kt/2^p) - b((k-1)t/2^p)|$$

- 1. Show that for all $p \ge 1$, $S_p \le S_{p+1}$ and define $S = \sup_{p \ge 1} S_p$.
- 2. Show that $S \leq |b|(t)$.

EXERCISE 19. Further to exercise (18), let $t_0 < \ldots < t_n$ be a finite sequence of distinct elements of [0, t]. Let $\epsilon > 0$.

1. Show that for all i = 0, ..., n, there exists $p_i \ge 1$ and $q_i \in \{0, 1, ..., 2^{p_i}\}$ such that:

$$0 \le t_0 \le \frac{q_0 t}{2p_0} < t_1 \le \frac{q_1 t}{2p_1} < \dots < t_n \le \frac{q_n t}{2p_n} \le t$$

and:

$$|b(t_i) - b(q_i t/2^{p_i})| \le \epsilon , \forall i = 0, \dots, n$$

2. Show the existence of $p \ge 1$, and $k_0, \ldots, k_n \in \{0, \ldots, 2^p\}$ with:

$$0 \le t_0 \le \frac{k_0 t}{2^p} < t_1 \le \frac{k_1 t}{2^p} < \dots < t_n \le \frac{k_n t}{2^p} \le t$$

and:

$$|b(t_i)-b(k_it/2^p)| \leq \epsilon, \ \forall i=0,\ldots,n$$

3. Show that:

$$\sum_{i=1}^{n} |b(k_i t/2^p) - b(k_{i-1} t/2^p)| \le S_p - |b(0)|$$

4. Show that:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le S - |b(0)| + 2n\epsilon$$

5. Show that:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le S - |b(0)|$$

- 6. Conclude that $|b|(t) \leq S$.
- 7. Prove the following:

Theorem 82 Let $b : \mathbf{R}^+ \to \mathbf{C}$ be right-continuous or left-continuous. Then, for all $t \in \mathbf{R}^+$:

$$|b|(t) = |b(0)| + \lim_{n \to +\infty} \sum_{k=1}^{2^n} |b(kt/2^n) - b((k-1)t/2^n)|$$

EXERCISE 20. Let $b: \mathbf{R}^+ \to \mathbf{R}^+$ be defined by $b = 1_{\mathbf{Q}^+}$. Show that:

$$+\infty = |b|(1) \neq \lim_{n \to +\infty} \sum_{k=1}^{2} |b(k/2^{n}) - b((k-1)/2^{n})| = 0$$

Exercise 21. $b: \mathbb{R}^+ \to \mathbb{C}$ is right-continuous of bounded variation.

- 1. Let $b_1 = Re(b)$ and $b_2 = Im(b)$. Explain why $d|b_1|^+$, $d|b_1|^-$, $d|b_2|^+$ and $d|b_2|^-$ are all well-defined measures on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$.
- 2. Is this still true, if b is right-continuous of finite variation?
- 3. Show that $d|b_1|^+$, $d|b_1|^-$, $d|b_2|^+$ and $d|b_2|^-$ are finite measures.
- 4. Let $db = d|b_1|^+ d|b_1|^- + i(d|b_2|^+ d|b_2|^-)$. Show that db is a well-defined complex measure on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$.
- 5. Show that $db({0}) = b(0)$.
- 6. Show that for all $s, t \in \mathbb{R}^+$, $s \le t$, db(]s, t]) = b(t) b(s).
- 7. Show that $\lim_{t\to+\infty} b(t)$ exists in **C**. We denote $b(\infty)$ this limit.
- 8. Show that $db(\mathbf{R}^+) = b(\infty)$.
- 9. Proving the uniqueness of db, justify the following:

Definition 110 Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of bounded variation. There exists a unique complex measure db on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$, such that:

(i)
$$db(\{0\}) = b(0)$$

(ii)
$$\forall s, t \in \mathbf{R}^+ \ s \le t \ , \ db([s, t]) = b(t) - b(s)$$

db is called the complex Stieltjes measure associated with b.

EXERCISE 22. Show that if $a: \mathbf{R}^+ \to \mathbf{R}^+$ is right-continuous, non-decreasing with $a(0) \geq 0$ and $a(\infty) < +\infty$, then definition (110) of da coincides with the already known definition (24).

EXERCISE 23. $b: \mathbb{R}^+ \to \mathbb{C}$ is right-continuous of finite variation.

1. Let $b_1 = Re(b)$ and $b_2 = Im(b)$. Explain why $d|b_1|^+$, $d|b_1|^-$, $d|b_2|^+$ and $d|b_2|^-$ are all well-defined measures on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$.

2. Why is it in general impossible to define:

$$db \stackrel{\triangle}{=} d|b_1|^+ - d|b_1|^- + i(d|b_2|^+ - d|b_2|^-)$$

Warning: it does not make sense to write something like 'db', unless b is either right-continuous, non-decreasing and $b(0) \geq 0$, or b is a right-continuous map of bounded variation.

EXERCISE 24. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a map. For all $T \in \mathbf{R}^+$, we define $b^T: \mathbf{R}^+ \to \mathbf{C}$ as $b^T(t) = b(T \wedge t)$ for all $t \in \mathbf{R}^+$.

- 1. Show that for all $T \in \mathbf{R}^+$, $|b^T| = |b|^T$.
- 2. Show that if b is of finite variation, then for all $T \in \mathbf{R}^+$, b^T is of bounded variation, and we have $|b^T|(\infty) = |b|(T) < +\infty$.
- 3. Show that if b is right-continuous and of finite variation, for all $T \in \mathbf{R}^+$, db^T is the unique complex measure on \mathbf{R}^+ , with:

(i)
$$db^T(\{0\}) = b(0)$$

(ii)
$$\forall s, t \in \mathbf{R}^+, s \leq t, db^T([s,t]) = b(T \wedge t) - b(T \wedge s)$$

- 4. Show that if b is \mathbf{R} -valued and of finite variation, for all $T \in \mathbf{R}^+$, we have $|b^T|^+ = (|b|^+)^T$ and $|b^T|^- = (|b|^-)^T$.
- 5. Show that if b is right-continuous and of bounded variation, for all $T \in \mathbf{R}^+$, we have $db^T = db^{[0,T]} = db([0,T] \cap \cdot)$
- 6. Show that if b is right-continuous, non-decreasing with $b(0) \ge 0$, for all $T \in \mathbf{R}^+$, we have $db^T = db^{[0,T]} = db([0,T] \cap \cdot)$

EXERCISE 25. Let μ, ν be two finite measures on \mathbb{R}^+ , such that:

(i)
$$\mu(\{0\}) \le \nu(\{0\})$$

(ii)
$$\forall s, t \in \mathbf{R}^+, s \le t , \mu(]s, t]) \le \nu(]s, t])$$

We define $a, c : \mathbf{R}^+ \to \mathbf{R}^+$ by $a(t) = \mu([0, t])$ and $c(t) = \nu([0, t])$.

1. Show that a and c are right-continuous, non-decreasing with $a(0) \ge 0$ and $c(0) \ge 0$.

- 2. Show that $da = \mu$ and $dc = \nu$.
- 3. Show that $a \leq c$.
- 4. Define $b: \mathbf{R}^+ \to \mathbf{R}^+$ by b=c-a. Show that b is right-continuous, non-decreasing with $b(0) \geq 0$.
- 5. Show that da + db = dc.
- 6. Conclude with the following:

Theorem 83 Let μ, ν be two finite measures on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$ with:

(i)
$$\mu(\{0\}) \le \nu(\{0\})$$

(ii)
$$\forall s, t \in \mathbf{R}^+, s \le t , \mu(]s, t]) \le \nu(]s, t])$$

Then $\mu \leq \nu$, i.e. for all $B \in \mathcal{B}(\mathbf{R}^+)$, $\mu(B) \leq \nu(B)$.

Exercise 26. $b: \mathbb{R}^+ \to \mathbb{C}$ is right-continuous of bounded variation.

- 1. Show that $|db|(\{0\}) = |b(0)| = d|b|(\{0\})$.
- 2. Let $s, t \in \mathbf{R}^+$, $s \le t$. Let $t_0 \le \ldots \le t_n$ be a finite sequence in $[s, t], n \ge 1$. Show that:

$$\sum_{i=1}^{n} |b(t_i) - b(t_{i-1})| \le |db|(]s,t])$$

- 3. Show that $|b|(t) |b|(s) \le |db|(]s, t]$).
- 4. Show that $d|b| \leq |db|$.
- 5. Show that $L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), |db|) \subseteq L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), d|b|)$.
- 6. Show that \mathbf{R}^+ is metrizable and strongly σ -compact.
- 7. Show that $C_{\mathbf{C}}^c(\mathbf{R}^+)$, $C_{\mathbf{C}}^b(\mathbf{R}^+)$ are dense in $L_{\mathbf{C}}^1(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), |db|)$.
- 8. Let $h \in L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), |db|)$. Given $\epsilon > 0$, show the existence of $\phi \in C^b_{\mathbf{C}}(\mathbf{R}^+)$ such that $\int |\phi h| |db| \le \epsilon$.

- 9. Show that $|\int hdb| \leq |\int \phi db| + \epsilon$.
- 10. Show that:

$$\left| \int |\phi| d|b| - \int |h| d|b| \right| \le \int |\phi - h| d|b| \le \int |\phi - h| |db|$$

- 11. Show that $\int |\phi|d|b| \leq \int |h|d|b| + \epsilon$.
- 12. For all $n \ge 1$, we define:

$$\phi_n \stackrel{\triangle}{=} \phi(0)1_{\{0\}} + \sum_{k=0}^{n2^n-1} \phi(k/2^n)1_{]k/2^n,(k+1)/2^n]}$$

Show there is $M \in \mathbf{R}^+$, such that $|\phi_n(x)| \leq M$ for all x and n.

- 13. Using the continuity of ϕ , show that $\phi_n \to \phi$.
- 14. Show that $\lim \int \phi_n db = \int \phi db$.
- 15. Show that $\lim \int |\phi_n| d|b| = \int |\phi| d|b|$.

16. Show that for all n > 1:

$$\int \phi_n db = \phi(0)b(0) + \sum_{k=0}^{n2^n-1} \phi(k/2^n)(b((k+1)/2^n) - b(k/2^n))$$

- 17. Show that $|\int \phi_n db| \le \int |\phi_n| d|b|$ for all $n \ge 1$.
- 18. Show that $|\int \phi db| \leq \int |\phi| d|b|$.
- 19. Show that $|\int hdb| \leq \int |h|d|b| + 2\epsilon$.
- 20. Show that $|\int hdb| \leq \int |h|d|b|$ for all $h \in L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), |db|)$.
- 21. Let $B \in \mathcal{B}(\mathbf{R}^+)$ and $h \in L^1_{\mathbf{C}}(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+), |db|)$ be such that |h| = 1 and $db = \int h|db|$. Show that $|db|(B) = \int_B \bar{h}db$.
- 22. Conclude that $|db| \leq d|b|$.

Exercise 27. $b: \mathbb{R}^+ \to \mathbb{C}$ is right-continuous of finite variation.

- 1. Show that for all $T \in \mathbf{R}^+$, $|db^T| = d|b^T| = d|b|^T$.
- 2. Show that $d|b|^T = d|b|^{[0,T]} = d|b|([0,T] \cap \cdot)$, and conclude:

Theorem 84 If $b: \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of bounded variation, the total variation of its associated complex Stieltjes measure, is equal to the Stieltjes measure associated with its total variation, i.e.

$$|db| = d|b|$$

If $b: \mathbf{R}^+ \to \mathbf{C}$ is right-continuous of finite variation, then for all $T \in \mathbf{R}^+$, b^T defined by $b^T(t) = b(T \wedge t)$, is right-continuous of bounded variation, and we have $|db^T| = d|b|([0,T] \cap \cdot) = d|b|^T$.

Definition 111 Let $b : \mathbf{R}^+ \to E$ be a map, where E is a Hausdorff topological space. We say that b is **cadlag** with respect to E, if and only if b is right-continuous, and the limit:

$$b(t-) = \lim_{s \uparrow \uparrow t} b(s)$$

exists in E, for all $t \in \mathbf{R}^+ \setminus \{0\}$. In the case when $E = \mathbf{C}$ or $E = \mathbf{R}$, given b cadlag, we define b(0-) = 0, and for all $t \in \mathbf{R}^+$:

$$\Delta b(t) \stackrel{\triangle}{=} b(t) - b(t-)$$

EXERCISE 28. Let $b: \mathbf{R}^+ \to E$ be cadlag, where E is a Hausdorff topological space. Suppose b has values in $E' \subseteq E$.

- 1. Show that for all t > 0, the limit b(t-) is unique.
- 2. Show that E' is Hausdorff.
- 3. Explain why b may not be cadlag with respect to E'.
- 4. Show that b is cadlag with respect to \bar{E}' .
- 5. Show that $b: \mathbb{R}^+ \to \mathbb{R}$ is cadlag \Leftrightarrow it is cadlag w.r. to \mathbb{C} .

Exercise 29.

- 1. Show that if $b : \mathbf{R}^+ \to \mathbf{C}$ is cadlag, then b is continuous with b(0) = 0 if and only if $\Delta b(t) = 0$ for all $t \in \mathbf{R}^+$.
- 2. Show that if $a: \mathbf{R}^+ \to \mathbf{R}^+$ is right-continuous, non-decreasing with $a(0) \geq 0$, then a is cadlag (w.r. to \mathbf{R} and \mathbf{R}^+) with $\Delta a \geq 0$.
- 3. Show that any linear combination of cadlag maps is itself cadlag.
- 4. Show that if $b: \mathbf{R}^+ \to \mathbf{C}$ is a right-continuous map of finite variation, then b is cadlag.
- 5. Let $a: \mathbf{R}^+ \to \mathbf{R}^+$ be right-continuous, non-decreasing with $a(0) \geq 0$. Show that $da(\{t\}) = \Delta a(t)$ for all $t \in \mathbf{R}^+$.
- 6. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of bounded variation. Show that $db(\{t\}) = \Delta b(t)$ for all $t \in \mathbf{R}^+$.

7. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a right-continuous map of finite variation. Let $T \in \mathbf{R}^+$. Show that:

$$\forall t \in \mathbf{R}^+, \ b^T(t-) = \left\{ \begin{array}{ll} b(t-) & \text{if} & t \le T \\ b(T) & \text{if} & T < t \end{array} \right.$$

Show that $\Delta b^T = (\Delta b) 1_{[0,T]}$, and $db^T(\{t\}) = \Delta b(t) 1_{[0,T]}(t)$.

EXERCISE 30. Let $b: \mathbf{R}^+ \to \mathbf{C}$ be a cadlag map and $T \in \mathbf{R}^+$.

- 1. Show that if $t \to b(t-)$ is not bounded on [0,T], there exists a sequence $(t_n)_{n\geq 1}$ in [0,T] such that $|b(t_n)| \to +\infty$.
- 2. Suppose from now on that b is not bounded on [0,T]. Show the existence of a sequence $(t_n)_{n\geq 1}$ in [0,T], such that $t_n\to t$ for some $t\in [0,T]$, and $|b(t_n)|\to +\infty$.
- 3. Define $R = \{n \ge 1 : t \le t_n\}$ and $L = \{n \ge 1 : t_n < t\}$. Show that R and L cannot be both finite.

4. Suppose that R is infinite. Show the existence of $n_1 \geq 1$, with:

$$t_{n_1} \in [t, t+1] \cap [0, T]$$

5. If R is infinite, show there is $n_1 < n_2 < \dots$ such that:

$$t_{n_k} \in [t, t + \frac{1}{k}[\cap [0, T], \forall k \ge 1]$$

- 6. Show that $|b(t_{n_h})| \not\to +\infty$.
- 7. Show that if L is infinite, then t > 0 and there is an increasing sequence $n_1 < n_2 < \ldots$, such that:

$$t_{n_k} \in]t - \frac{1}{k}, t[\cap[0,T], \forall k \geq 1]$$

- 8. Show that: $|b(t_{n_k})| \not\to +\infty$.
- 9. Prove the following:

Theorem 85 Let $b : \mathbf{R}^+ \to \mathbf{C}$ be a cadlag map. Let $T \in \mathbf{R}^+$. Then b and the map $t \to b(t-)$ are bounded on [0,T], i.e. there exists $M \in \mathbf{R}^+$ such that:

$$|b(t)| \lor |b(t-)| \le M$$
, $\forall t \in [0,T]$