17. Image Measure

In the following, **K** denotes **R** or **C**. We denote $\mathcal{M}_n(\mathbf{K})$, $n \geq 1$, the set of all $n \times n$ -matrices with **K**-valued entries. We recall that for all $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$, M is identified with the linear map $M : \mathbf{K}^n \to \mathbf{K}^n$ uniquely determined by:

$$\forall j = 1, \dots, n , Me_j \stackrel{\triangle}{=} \sum_{i=1}^n m_{ij} e_i$$

where (e_1, \ldots, e_n) is the canonical basis of \mathbf{K}^n , i.e. $e_i \stackrel{\triangle}{=} (0, \ldots, 1, \ldots, 0)$.

EXERCISE 1. For all $\alpha \in \mathbf{K}$, let $H_{\alpha} \in \mathcal{M}_n(\mathbf{K})$ be defined by:

$$H_{lpha} \stackrel{\triangle}{=} \left(egin{array}{cccc} lpha & & & & \\ & 1 & 0 & & \\ & & 0 & \ddots & \\ & & & 1 \end{array} \right)$$

i.e. by $H_{\alpha}e_1 = \alpha e_1$, $H_{\alpha}e_j = e_j$, for all $j \geq 2$. Note that H_{α} is obtained from the identity matrix, by multiplying the top left entry by α . For $k, l \in \{1, \ldots, n\}$, we define the matrix $\Sigma_{kl} \in \mathcal{M}_n(\mathbf{K})$ by $\Sigma_{kl}e_k = e_l$, $\Sigma_{kl}e_l = e_k$ and $\Sigma_{kl}e_j = e_j$, for all $j \in \{1, \ldots, n\} \setminus \{k, l\}$. Note that Σ_{kl} is obtained from the identity matrix, by interchanging column k and column k. If $k \geq 2$, we define the matrix $k \in \mathcal{M}_n(\mathbf{K})$ by:

$$U \stackrel{\triangle}{=} \left(\begin{array}{cccc} 1 & 0 & & \\ 1 & 1 & 0 & \\ & & & \\ & & 0 & \ddots & \\ & & & & 1 \end{array} \right)$$

i.e. by $Ue_1 = e_1 + e_2$, $Ue_j = e_j$ for all $j \geq 2$. Note that the matrix U is obtained from the identity matrix, by adding column 2 to column 1. If n = 1, we put U = 1. We define $\mathcal{N}_n(\mathbf{K}) = \{H_\alpha : \alpha \in \mathbf{K}\} \cup \{\Sigma_{kl} : k, l = 1, \ldots, n\} \cup \{U\}$, and $\mathcal{M}'_n(\mathbf{K})$ to be the set of all finite products

of elements of $\mathcal{N}_n(\mathbf{K})$:

$$\mathcal{M}'_n(\mathbf{K}) \stackrel{\triangle}{=} \{ M \in \mathcal{M}_n(\mathbf{K}) : M = Q_1 \dots Q_p, p \geq 1, Q_j \in \mathcal{N}_n(\mathbf{K}), \forall j \}$$

We shall prove that $\mathcal{M}_n(\mathbf{K}) = \mathcal{M}'_n(\mathbf{K})$.

- 1. Show that if $\alpha \in \mathbf{K} \setminus \{0\}$, H_{α} is non-singular with $H_{\alpha}^{-1} = H_{1/\alpha}$
- 2. Show that if $k, l = 1, ..., n, \Sigma_{kl}$ is non-singular with $\Sigma_{kl}^{-1} = \Sigma_{kl}$.
- 3. Show that U is non-singular, and that for $n \geq 2$:

$$U^{-1} = \left(\begin{array}{ccc} 1 & 0 \\ -1 & 1 & 0 \\ & 0 & \ddots \\ & & 1 \end{array} \right)$$

4. Let $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K})$. Let R_1, \ldots, R_n be the rows of M:

$$M \stackrel{\triangle}{=} \left(\begin{array}{c} R_1 \\ R_2 \\ \vdots \\ R_n \end{array} \right)$$

Show that for all $\alpha \in \mathbf{K}$:

$$H_{\alpha}.M = \begin{pmatrix} \alpha R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix}$$

Conclude that multiplying M by H_{α} from the left, amounts to multiplying the first row of M by α .

5. Show that multiplying M by H_{α} from the right, amounts to multiplying the first column of M by α .

- 6. Show that multiplying M by Σ_{kl} from the left, amounts to interchanging the rows R_l and R_k .
- 7. Show that multiplying M by Σ_{kl} from the right, amounts to interchanging the columns C_l and C_k .
- 8. Show that multiplying M by U^{-1} from the left ($n \ge 2$), amounts to subtracting R_1 from R_2 , i.e.:

$$U^{-1} \cdot \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_n \end{pmatrix} = \begin{pmatrix} R_1 \\ R_2 - R_1 \\ \vdots \\ R_n \end{pmatrix}$$

- 9. Show that multiplying M by U^{-1} from the right (for $n \geq 2$), amounts to subtracting C_2 from C_1 .
- 10. Define $U' = \Sigma_{12}.U^{-1}.\Sigma_{12}$, $(n \ge 2)$. Show that multiplying M by U' from the right, amounts to subtracting C_1 from C_2 .

11. Show that if n = 1, then indeed we have $\mathcal{M}_1(\mathbf{K}) = \mathcal{M}'_1(\mathbf{K})$.

EXERCISE 2. Further to exercise (1), we now assume that $n \geq 2$, and make the induction hypothesis that $\mathcal{M}_{n-1}(\mathbf{K}) = \mathcal{M}'_{n-1}(\mathbf{K})$.

1. Let $O_n \in \mathcal{M}_n(\mathbf{K})$ be the matrix with all entries equal to zero. Show the existence of $Q'_1, \ldots, Q'_p \in \mathcal{N}_{n-1}(\mathbf{K}), p \geq 1$, such that:

$$O_{n-1} = Q_1' \dots Q_p'$$

2. For k = 1, ..., p, we define $Q_k \in \mathcal{M}_n(\mathbf{K})$, by:

$$Q_k \stackrel{\triangle}{=} \left(\begin{array}{ccc} & & 0 \\ & Q_k' & \vdots \\ & & 0 \\ 0 & \dots & 0 & 1 \end{array} \right)$$

Show that $Q_k \in \mathcal{N}_n(\mathbf{K})$, and that we have:

$$\Sigma_{1n}.Q_1...Q_p.\Sigma_{1n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & O_{n-1} & \\ 0 & & & \end{pmatrix}$$

- 3. Conclude that $O_n \in \mathcal{M}'_n(\mathbf{K})$.
- 4. We now consider $M = (m_{ij}) \in \mathcal{M}_n(\mathbf{K}), M \neq O_n$. We want to show that $M \in \mathcal{M}'_n(\mathbf{K})$. Show that for some $k, l \in \{1, ..., n\}$:

$$H_{m_{kl}}^{-1}.\Sigma_{1k}.M.\Sigma_{1l} = \begin{pmatrix} 1 & * & \dots & * \\ * & & & \\ \vdots & & * & \\ * & & & \end{pmatrix}$$

5. Show that if $H_{m_{kl}}^{-1} \cdot \Sigma_{1k} \cdot M \cdot \Sigma_{1l} \in \mathcal{M}'_n(\mathbf{K})$, then $M \in \mathcal{M}'_n(\mathbf{K})$. Conclude that without loss of generality, in order to prove that

M lies in $\mathcal{M}'_n(\mathbf{K})$ we can assume that $m_{11}=1$.

6. Let i = 2, ..., n. Show that if $m_{i1} \neq 0$, we have:

$$H_{m_{i1}}^{-1}.\Sigma_{2i}.U^{-1}.\Sigma_{2i}.H_{1/m_{i1}}^{-1}.M = \begin{pmatrix} 1 & * & \dots & * \\ * & & \\ 0 & \leftarrow i & * \\ * & & \end{pmatrix}$$

7. Conclude that without loss of generality, we can assume that $m_{i1} = 0$ for all $i \geq 2$, i.e. that M is of the form:

$$M = \begin{pmatrix} 1 & * & \dots & * \\ 0 & & & \\ \vdots & & * & \\ 0 & & & \end{pmatrix}$$

8. Show that in order to prove that $M \in \mathcal{M}'_n(\mathbf{K})$, without loss of

generality, we can assume that M is of the form:

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & M' & \\ 0 & & & \end{pmatrix}$$

9. Prove that $M \in \mathcal{M}'_n(\mathbf{K})$ and conclude with the following:

Theorem 103 Given $n \geq 2$, any $n \times n$ -matrix with values in **K** is a finite product of matrices Q of the following types:

(i)
$$Qe_1 = \alpha e_1, \ Qe_j = e_j, \ \forall j = 2, \dots, n, \ (\alpha \in \mathbf{K})$$

(ii)
$$Qe_l = e_k , Qe_k = e_l , Qe_j = e_j , \forall j \neq k, l , (k, l \in \mathbf{N}_n)$$

(iii)
$$Qe_1 = e_1 + e_2 , Qe_j = e_j , \forall j = 2, ..., n$$

where (e_1, \ldots, e_n) is the canonical basis of \mathbf{K}^n .

Definition 123 Let $X: (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) and (Ω', \mathcal{F}') are two measurable spaces. Let μ be a (possibly complex) measure on (Ω, \mathcal{F}) . Then, we call **distribution** of X under μ , or **image measure** of μ by X, or even **law** of X under μ , the (possibly complex) measure on (Ω', \mathcal{F}') , denoted μ^X , $X(\mu)$ or $\mathcal{L}_{\mu}(X)$, and defined by:

$$\forall B \in \mathcal{F}' , \ \mu^X(B) \stackrel{\triangle}{=} \mu(\{X \in B\}) = \mu(X^{-1}(B))$$

EXERCISE 3. Let $X:(\Omega,\mathcal{F})\to(\Omega',\mathcal{F}')$ be a measurable map, where (Ω,\mathcal{F}) and (Ω',\mathcal{F}') are two measurable spaces.

- 1. Let $B \in \mathcal{F}'$. Show that if $(B_n)_{n\geq 1}$ is a measurable partition of B, then $(X^{-1}(B_n))_{n\geq 1}$ is a measurable partition of $X^{-1}(B)$.
- 2. Show that if μ is a measure on (Ω, \mathcal{F}) , μ^X is a well-defined measure on (Ω', \mathcal{F}') .
- 3. Show that if μ is a complex measure on (Ω, \mathcal{F}) , μ^X is a well-defined complex measure on (Ω', \mathcal{F}') .

- 4. Show that if μ is a complex measure on (Ω, \mathcal{F}) , then $|\mu^X| \leq |\mu|^X$.
- 5. Let $Y:(\Omega',\mathcal{F}')\to (\Omega'',\mathcal{F}'')$ be a measurable map, where (Ω'',\mathcal{F}'') is another measurable space. Show that for all (possibly complex) measure μ on (Ω,\mathcal{F}) , we have:

$$Y(X(\mu)) = (Y \circ X)(\mu) = (\mu^X)^Y = \mu^{(Y \circ X)}$$

Definition 124 Let μ be a (possibly complex) measure on \mathbf{R}^n , $n \geq 1$. We say that μ is **invariant by translation**, if and only if $\tau_a(\mu) = \mu$ for all $a \in \mathbf{R}^n$, where $\tau_a : \mathbf{R}^n \to \mathbf{R}^n$ is the translation mapping defined by $\tau_a(x) = a + x$, for all $x \in \mathbf{R}^n$.

EXERCISE 4. Let μ be a (possibly complex) measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.

1. Show that $\tau_a: (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ is measurable.

- 2. Show $\tau_a(\mu)$ is therefore a well-defined (possibly complex) measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, for all $a \in \mathbf{R}^n$.
- 3. Show that $\tau_a(dx) = dx$ for all $a \in \mathbf{R}^n$.
- 4. Show the Lebesgue measure on \mathbb{R}^n is invariant by translation.

EXERCISE 5. Let $k_{\alpha}: \mathbf{R}^n \to \mathbf{R}^n$ be defined by $k_{\alpha}(x) = \alpha x$, $\alpha > 0$.

- 1. Show that $k_{\alpha}: (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)) \to (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$ is measurable.
- 2. Show that $k_{\alpha}(dx) = \alpha^{-n}dx$.

EXERCISE 6. Show the following:

Theorem 104 (Integral Projection 1) Let $X:(\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) , (Ω', \mathcal{F}') are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}) . Then, for all $f:(\Omega', \mathcal{F}') \to [0, +\infty]$ non-negative and measurable, we have:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

EXERCISE 7. Show the following:

Theorem 105 (Integral Projection 2) Let $X:(\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) , (Ω', \mathcal{F}') are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}) . Then, for all $f:(\Omega', \mathcal{F}') \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable, we have the equivalence:

$$f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \iff f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$$

in which case, we have:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

EXERCISE 8. Further to theorem (105), suppose μ is in fact a complex measure on (Ω, \mathcal{F}) . Show that:

$$\int_{\Omega'} |f|d|X(\mu)| \le \int_{\Omega} |f \circ X|d|\mu| \tag{1}$$

Conclude with the following:

Theorem 106 (Integral Projection 3) Let $X:(\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a measurable map, where (Ω, \mathcal{F}) , (Ω', \mathcal{F}') are measurable spaces. Let μ be a complex measure on (Ω, \mathcal{F}) . Then, for all measurable maps $f:(\Omega', \mathcal{F}') \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$, we have:

$$f \circ X \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \Rightarrow f \in L^1_{\mathbf{C}}(\Omega', \mathcal{F}', X(\mu))$$

and when the left-hand side of this implication is satisfied:

$$\int_{\Omega} f \circ X d\mu = \int_{\Omega'} f dX(\mu)$$

EXERCISE 9. Let $X : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be a measurable map with distribution $\mu = X(P)$, where (Ω, \mathcal{F}, P) is a probability space.

1. Show that X is integrable, i.e. $\int |X| dP < +\infty$, if and only if:

$$\int_{-\infty}^{+\infty} |x| d\mu(x) < +\infty$$

2. Show that if X is integrable, then:

$$E[X] = \int_{-\infty}^{+\infty} x d\mu(x)$$

3. Show that:

$$E[X^2] = \int_{-\infty}^{+\infty} x^2 d\mu(x)$$

EXERCISE 10. Let μ be a locally finite measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, which is invariant by translation. For all $a = (a_1, \ldots, a_n) \in (\mathbf{R}^+)^n$, we define $Q_a = [0, a_1[\times \ldots \times [0, a_n[$, and in particular $Q = Q_{(1,\ldots,1)} = [0, 1[^n]$.

1. Show that $\mu(Q_a) < +\infty$ for all $a \in (\mathbf{R}^+)^n$, and $\mu(Q) < +\infty$.

2. Let $p = (p_1, \ldots, p_n)$ where $p_i \ge 1$ is an integer for all i's. Show:

$$Q_p = \biguplus_{k \in \mathbf{N}^n} [k_1, k_1 + 1[\times \dots \times [k_n, k_n + 1[$$

$$0 \le k_i < p_i$$

- 3. Show that $\mu(Q_p) = p_1 \dots p_n \mu(Q)$.
- 4. Let $q_1, \ldots, q_n \geq 1$ be n positive integers. Show that:

$$Q_p = \biguplus_{k \in \mathbf{N}^n} \left[\frac{k_1 p_1}{q_1}, \frac{(k_1 + 1) p_1}{q_1} \left[\times \dots \times \left[\frac{k_n p_n}{q_n}, \frac{(k_n + 1) p_n}{q_n} \right] \right] \\ 0 < k_i < q_i$$

- 5. Show that $\mu(Q_p) = q_1 \dots q_n \mu(Q_{(p_1/q_1, \dots, p_n/q_n)})$
- 6. Show that $\mu(Q_r) = r_1 \dots r_n \mu(Q)$, for all $r \in (\mathbf{Q}^+)^n$.
- 7. Show that $\mu(Q_a) = a_1 \dots a_n \mu(Q)$, for all $a \in (\mathbf{R}^+)^n$.

8. Show that $\mu(B) = \mu(Q)dx(B)$, for all $B \in \mathcal{C}$, where:

$$\mathcal{C} \stackrel{\triangle}{=} \{ [a_1, b_1[\times \ldots \times [a_n, b_n[\ ,\ a_i, b_i \in \mathbf{R}\ ,\ a_i \le b_i\ ,\ \forall i \in \mathbf{N}^n \}$$

- 9. Show that $B(\mathbf{R}^n) = \sigma(\mathcal{C})$.
- 10. Show that $\mu = \mu(Q)dx$, and conclude with the following:

Theorem 107 Let μ be a locally finite measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$. If μ is invariant by translation, then there exists $\alpha \in \mathbf{R}^+$ such that:

$$\mu = \alpha dx$$

EXERCISE 11. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection.

1. Show that T and T^{-1} are continuous.

2. Show that for all $B \subseteq \mathbf{R}^n$, the inverse image $T^{-1}(B) = \{T \in B\}$ coincides with the direct image:

$$T^{-1}(B) \stackrel{\triangle}{=} \{y: y = T^{-1}(x) \text{ for some } x \in B\}$$

- 3. Show that for all $B \subseteq \mathbf{R}^n$, the direct image T(B) coincides with the inverse image $(T^{-1})^{-1}(B) = \{T^{-1} \in B\}$.
- 4. Let $K \subseteq \mathbf{R}^n$ be compact. Show that $\{T \in K\}$ is compact.
- 5. Show that T(dx) is a locally finite measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.
- 6. Let τ_a be the translation of vector $a \in \mathbb{R}^n$. Show that:

$$T \circ \tau_{T^{-1}(a)} = \tau_a \circ T$$

- 7. Show that T(dx) is invariant by translation.
- 8. Show the existence of $\alpha \in \mathbf{R}^+$, such that $T(dx) = \alpha dx$. Show that such constant is unique, and denote it by $\Delta(T)$.

9. Show that $Q = T([0,1]^n) \in \mathcal{B}(\mathbf{R}^n)$ and that we have:

$$\Delta(T)dx(Q) = T(dx)(Q) = 1$$

- 10. Show that $\Delta(T) \neq 0$.
- 11. Let $T_1, T_2: \mathbf{R}^n \to \mathbf{R}^n$ be two linear bijections. Show that:

$$(T_1 \circ T_2)(dx) = \Delta(T_1)\Delta(T_2)dx$$

and conclude that $\Delta(T_1 \circ T_2) = \Delta(T_1)\Delta(T_2)$.

EXERCISE 12. Let $\alpha \in \mathbf{R} \setminus \{0\}$. Let $H_{\alpha} : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection uniquely defined by $H_{\alpha}(e_1) = \alpha e_1$, $H_{\alpha}(e_j) = e_j$ for $j \geq 2$.

- 1. Show that $H_{\alpha}(dx)([0,1]^n) = |\alpha|^{-1}$.
- 2. Conclude that $\Delta(H_{\alpha}) = |\det H_{\alpha}|^{-1}$.

EXERCISE 13. Let $k, l \in \mathbf{N}_n$ and $\Sigma : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection uniquely defined by $\Sigma(e_k) = e_l$, $\Sigma(e_l) = e_k$, $\Sigma(e_j) = e_j$, for $j \neq k, l$.

- 1. Show that $\Sigma(dx)([0,1]^n) = 1$.
- 2. Show that $\Sigma . \Sigma = I_n$. (Identity mapping on \mathbb{R}^n).
- 3. Show that $|\det \Sigma| = 1$.
- 4. Conclude that $\Delta(\Sigma) = |\det \Sigma|^{-1}$.

EXERCISE 14. Let $n \ge 2$ and $U : \mathbf{R}^n \to \mathbf{R}^n$ be the linear bijection uniquely defined by $U(e_1) = e_1 + e_2$ and $U(e_j) = e_j$ for $j \ge 2$. Let $Q = [0, 1]^n$.

1. Show that:

$$U^{-1}(Q) = \{ x \in \mathbf{R}^n : 0 \le x_1 + x_2 < 1, 0 \le x_i < 1, \forall i \ne 2 \}$$

2. Define:

$$\Omega_1 \stackrel{\triangle}{=} U^{-1}(Q) \cap \{x \in \mathbf{R}^n : x_2 \ge 0\}$$

$$\Omega_2 \stackrel{\triangle}{=} U^{-1}(Q) \cap \{x \in \mathbf{R}^n : x_2 < 0\}$$

Show that $\Omega_1, \Omega_2 \in \mathcal{B}(\mathbf{R}^n)$.

- 3. Let τ_{e_2} be the translation of vector e_2 . Draw a picture of Q, Ω_1 , Ω_2 and $\tau_{e_2}(\Omega_2)$ in the case when n=2.
- 4. Show that if $x \in \Omega_1$, then $0 \le x_2 < 1$.
- 5. Show that $\Omega_1 \subseteq Q$.
- 6. Show that if $x \in \tau_{e_2}(\Omega_2)$, then $0 \le x_2 < 1$.
- 7. Show that $\tau_{e_2}(\Omega_2) \subseteq Q$.
- 8. Show that if $x \in Q$ and $x_1 + x_2 < 1$ then $x \in \Omega_1$.
- 9. Show that if $x \in Q$ and $x_1 + x_2 \ge 1$ then $x \in \tau_{e_2}(\Omega_2)$.

- 10. Show that if $x \in \tau_{e_2}(\Omega_2)$ then $x_1 + x_2 \ge 1$.
- 11. Show that $\tau_{e_2}(\Omega_2) \cap \Omega_1 = \emptyset$.
- 12. Show that $Q = \Omega_1 \uplus \tau_{e_2}(\Omega_2)$.
- 13. Show that $dx(Q) = dx(U^{-1}(Q))$.
- 14. Show that $\Delta(U) = 1$.
- 15. Show that $\Delta(U) = |\det U|^{-1}$.

EXERCISE 15. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection, $(n \ge 1)$.

- 1. Show the existence of linear bijections $Q_1, \ldots, Q_p : \mathbf{R}^n \to \mathbf{R}^n$, $p \ge 1$, with $T = Q_1 \circ \ldots \circ Q_p$, $\Delta(Q_i) = |\det Q_i|^{-1}$ for all $i \in \mathbf{N}_p$.
- 2. Show that $\Delta(T) = |\det T|^{-1}$.
- 3. Conclude with the following:

Theorem 108 Let $n \ge 1$ and $T : \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection. Then, the image measure T(dx) of the Lebesgue measure on \mathbf{R}^n is:

$$T(dx) = |\det T|^{-1} dx$$

EXERCISE 16. Let $f: (\mathbf{R}^2, \mathcal{B}(\mathbf{R}^2)) \to [0, +\infty]$ be a non-negative and measurable map. Let $a, b, c, d \in \mathbf{R}$ such that $ad - bc \neq 0$. Show that:

$$\int_{\mathbf{R}^2} f(ax+by,cx+dy) dx dy = |ad-bc|^{-1} \int_{\mathbf{R}^2} f(x,y) dx dy$$

EXERCISE 17. Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be a linear bijection. Show that for all $B \in \mathcal{B}(\mathbf{R}^n)$, we have $T(B) \in \mathcal{B}(\mathbf{R}^n)$ and:

$$dx(T(B)) = |\det T| dx(B)$$

EXERCISE 18. Let V be a linear subspace of \mathbb{R}^n and $p = \dim V$. We assume that $1 \le p \le n-1$. Let u_1, \ldots, u_p be an orthonormal basis of

V, and u_{p+1}, \ldots, u_n be such that u_1, \ldots, u_n is an orthonormal basis of \mathbf{R}^n . For $i \in \mathbf{N}_n$, Let $\phi_i : \mathbf{R}^n \to \mathbf{R}$ be defined by $\phi_i(x) = \langle u_i, x \rangle$.

- 1. Show that all ϕ_i 's are continuous.
- 2. Show that $V = \bigcap_{i=p+1}^{n} \phi_i^{-1}(\{0\})$.
- 3. Show that V is a closed subset of \mathbb{R}^n .
- 4. Let $Q = (q_{ij}) \in \mathcal{M}_n(\mathbf{R})$ be the matrix uniquely defined by $Qe_j = u_j$ for all $j \in \mathbf{N}_n$, where (e_1, \ldots, e_n) is the canonical basis of \mathbf{R}^n . Show that for all $i, j \in \mathbf{N}_n$:

$$\langle u_i, u_j \rangle = \sum_{k=1}^n q_{ki} q_{kj}$$

- 5. Show that $Q^t \cdot Q = I_n$ and conclude that $|\det Q| = 1$.
- 6. Show that $dx({Q \in V}) = dx(V)$.

- 7. Show that $\{Q \in V\} = \text{span}(e_1, \dots, e_p)^{1}$
- 8. For all $m \ge 1$, we define:

$$E_m \stackrel{\triangle}{=} \underbrace{[-m,m] \times \ldots \times [-m,m]}_{n-1} \times \{0\}$$

Show that $dx(E_m) = 0$ for all $m \ge 1$.

- 9. Show that $dx(\text{span}(e_1, ..., e_{n-1})) = 0$.
- 10. Conclude with the following:

Theorem 109 Let $n \ge 1$. Any linear subspace V of \mathbf{R}^n is a closed subset of \mathbf{R}^n . Moreover, if dim $V \le n - 1$, then dx(V) = 0.

¹i.e. the linear subspace of \mathbf{R}^n generated by e_1, \ldots, e_p .