4. Measurability

Definition 25 Let A and B be two sets, and $f : A \to B$ be a map. Given $A' \subseteq A$, we call **direct image** of A' by f the set denoted f(A'), and defined by $f(A') = \{f(x) : x \in A'\}$.

Definition 26 Let A and B be two sets, and $f: A \to B$ be a map. Given $B' \subseteq B$, we call **inverse image** of B' by f the set denoted $f^{-1}(B')$, and defined by $f^{-1}(B') = \{x : x \in A, f(x) \in B'\}$.

EXERCISE 1. Let A and B be two sets, and $f: A \to B$ be a bijection from A to B. Let $A' \subseteq A$ and $B' \subseteq B$.

- 1. Explain why the notation $f^{-1}(B')$ is potentially ambiguous.
- 2. Show that the inverse image of B' by f is in fact equal to the direct image of B' by f^{-1} .
- 3. Show that the direct image of A' by f is in fact equal to the inverse image of A' by f^{-1} .

Definition 27 Let (Ω, \mathcal{T}) and (S, \mathcal{T}_S) be two topological spaces. A map $f: \Omega \to S$ is said to be **continuous** if and only if:

$$\forall B \in \mathcal{T}_S \ , \ f^{-1}(B) \in \mathcal{T}$$

In other words, if and only if the inverse image of any open set in S is an open set in Ω .

We Write $f:(\Omega, \mathcal{T}) \to (S, \mathcal{T}_S)$ is continuous, as a way of emphasizing the two topologies \mathcal{T} and \mathcal{T}_S with respect to which f is continuous.

Definition 28 Let E be a set. A map $d: E \times E \to [0, +\infty[$ is said to be a **metric** on E, if and only if:

- (i) $\forall x, y \in E$, $d(x, y) = 0 \Leftrightarrow x = y$
- (ii) $\forall x, y \in E , d(x, y) = d(y, x)$
- (iii) $\forall x, y, z \in E , d(x,y) \le d(x,z) + d(z,y)$

Definition 29 A metric space is an ordered pair (E, d) where E is a set, and d is a metric on E.

Definition 30 Let (E,d) be a metric space. For all $x \in E$ and $\epsilon > 0$, we define the so-called **open ball** in E:

$$B(x,\epsilon) \stackrel{\triangle}{=} \{ y : y \in E , d(x,y) < \epsilon \}$$

We call **metric topology** on E, associated with d, the topology \mathcal{T}_E^d defined by:

$$\mathcal{T}_E^d \stackrel{\triangle}{=} \{ U \subseteq E , \forall x \in U, \exists \epsilon > 0, B(x, \epsilon) \subseteq U \}$$

EXERCISE 2. Let \mathcal{T}_E^d be the metric topology associated with d, where (E,d) is a metric space.

- 1. Show that \mathcal{T}_E^d is indeed a topology on E.
- 2. Given $x \in E$ and $\epsilon > 0$, show that $B(x, \epsilon)$ is an open set in E.

EXERCISE 3. Show that the usual topology on **R** is nothing but the metric topology associated with d(x, y) = |x - y|.

EXERCISE 4. Let (E,d) and (F,δ) be two metric spaces. Show that a map $f: E \to F$ is continuous, if and only if for all $x \in E$ and $\epsilon > 0$, there exists $\eta > 0$ such that for all $y \in E$:

$$d(x,y) < \eta \quad \Rightarrow \quad \delta(f(x),f(y)) < \epsilon$$

Definition 31 Let (Ω, T) and (S, T_S) be two topological spaces. A map $f: \Omega \to S$ is said to be a **homeomorphism**, if and only if f is a continuous bijection, such that f^{-1} is also continuous.

Definition 32 A topological space (Ω, \mathcal{T}) is said to be **metrizable**, if and only if there exists a metric d on Ω , such that the associated metric topology coincides with \mathcal{T} , i.e. $\mathcal{T}_{\Omega}^d = \mathcal{T}$.

Definition 33 Let (E,d) be a metric space and $F \subseteq E$. We call **induced metric** on F, denoted $d_{|F}$, the restriction of the metric d to $F \times F$, i.e. $d_{|F} = d_{|F \times F}$.

EXERCISE 5. Let (E,d) be a metric space and $F \subseteq E$. We define $\mathcal{T}_F = (\mathcal{T}_E^d)_{|F}$ as the topology on F induced by the metric topology on E. Let $\mathcal{T}_F^f = \mathcal{T}_F^{d_{|F}}$ be the metric topology on F associated with the induced metric $d_{|F}$ on F.

- 1. Show that $\mathcal{T}_F \subseteq \mathcal{T}_F'$.
- 2. Given $A \in \mathcal{T}'_F$, show that $A = (\bigcup_{x \in A} B(x, \epsilon_x)) \cap F$ for some $\epsilon_x > 0, x \in A$, where $B(x, \epsilon_x)$ denotes the open ball in E.
- 3. Show that $\mathcal{T}_F' \subseteq \mathcal{T}_F$.

Theorem 12 Let (E,d) be a metric space and $F \subseteq E$. Then, the topology on F induced by the metric topology, is equal to the metric topology on F associated with the induced metric, i.e. $(\mathcal{T}_E^d)_{|F} = \mathcal{T}_F^{d|F}$.

EXERCISE 6. Let $\phi : \mathbf{R} \to]-1,1[$ be the map defined by:

$$\forall x \in \mathbf{R} \quad , \quad \phi(x) \stackrel{\triangle}{=} \frac{x}{|x|+1}$$

- 1. Show that [-1,0[is not open in \mathbf{R} .
- 2. Show that [-1, 0[is open in [-1, 1].
- 3. Show that ϕ is a homeomorphism between ${\bf R}$ and] 1, 1[.
- 4. Show that $\lim_{x\to+\infty} \phi(x) = 1$ and $\lim_{x\to-\infty} \phi(x) = -1$.

EXERCISE 7. Let $\bar{\mathbf{R}} = [-\infty, +\infty] = \mathbf{R} \cup \{-\infty, +\infty\}$. Let ϕ be defined

as in exercise (6), and $\bar{\phi}: \bar{\mathbf{R}} \to [-1,1]$ be the map defined by:

$$\bar{\phi}(x) = \begin{cases} \phi(x) & \text{if } x \in \mathbf{R} \\ 1 & \text{if } x = +\infty \\ -1 & \text{if } x = -\infty \end{cases}$$

Define:

$$\mathcal{T}_{\bar{\mathbf{R}}} \stackrel{\triangle}{=} \{U \subseteq \bar{\mathbf{R}} \ , \ \bar{\phi}(U) \text{ is open in } [-1,1] \}$$

- 1. Show that $\bar{\phi}$ is a bijection from $\bar{\mathbf{R}}$ to [-1,1], and let $\bar{\psi} = \bar{\phi}^{-1}$.
- 2. Show that $\mathcal{T}_{\bar{\mathbf{R}}}$ is a topology on $\bar{\mathbf{R}}$.
- 3. Show that $\bar{\phi}$ is a homeomorphism between $\bar{\mathbf{R}}$ and [-1,1].
- 4. Show that $[-\infty, 2[,]3, +\infty]$, $]3, +\infty[$ are open in $\bar{\mathbf{R}}$.
- 5. Show that if $\phi': \mathbf{R} \to [-1,1]$ is an arbitrary homeomorphism, then $U \subseteq \mathbf{R}$ is open, if and only if $\phi'(U)$ is open in [-1,1].

Definition 34 The usual topology on $\bar{\mathbf{R}}$ is defined as:

$$\mathcal{T}_{\bar{\mathbf{R}}} \stackrel{\triangle}{=} \{ U \subseteq \bar{\mathbf{R}} , \ \bar{\phi}(U) \ is \ open \ in [-1,1] \}$$

where $\bar{\phi}: \bar{\mathbf{R}} \to [-1,1]$ is defined by $\bar{\phi}(-\infty) = -1$, $\bar{\phi}(+\infty) = 1$ and:

$$\forall x \in \mathbf{R} \quad , \quad \bar{\phi}(x) \stackrel{\triangle}{=} \frac{x}{|x|+1}$$

EXERCISE 8. Let ϕ and $\bar{\phi}$ be as in exercise (7). Define:

$$\mathcal{T}' \stackrel{\triangle}{=} (\mathcal{T}_{\bar{\mathbf{R}}})_{|\mathbf{R}} \stackrel{\triangle}{=} \{U \cap \mathbf{R} , U \in \mathcal{T}_{\bar{\mathbf{R}}}\}$$

- 1. Recall why \mathcal{T}' is a topology on \mathbf{R} .
- 2. Show that for all $U \subseteq \bar{\mathbf{R}}$, $\phi(U \cap \mathbf{R}) = \bar{\phi}(U) \cap] 1, 1[$.
- 3. Explain why if $U \in \mathcal{T}_{\bar{\mathbf{R}}}$, $\phi(U \cap \mathbf{R})$ is open in]-1,1[.
- 4. Show that $\mathcal{T}' \subseteq \mathcal{T}_{\mathbf{R}}$, (the usual topology on \mathbf{R}).

- 5. Let $U \in \mathcal{T}_{\mathbf{R}}$. Show that $\bar{\phi}(U)$ is open in]-1,1[and [-1,1].
- 6. Show that $\mathcal{T}_{\mathbf{R}} \subseteq \mathcal{T}_{\bar{\mathbf{R}}}$
- 7. Show that $\mathcal{T}_{\mathbf{R}} = \mathcal{T}'$, i.e. that the usual topology on $\bar{\mathbf{R}}$ induces the usual topology on \mathbf{R} .
- 8. Show that $\mathcal{B}(\mathbf{R}) = \mathcal{B}(\bar{\mathbf{R}})_{|\mathbf{R}} = \{B \cap \mathbf{R}, B \in \mathcal{B}(\bar{\mathbf{R}})\}$

EXERCISE 9. Let $d: \bar{\mathbf{R}} \times \bar{\mathbf{R}} \to [0, +\infty[$ be defined by:

$$\forall (x,y) \in \bar{\mathbf{R}} \times \bar{\mathbf{R}} \quad , \quad d(x,y) = |\phi(x) - \phi(y)|$$

where ϕ is an arbitrary homeomorphism from $\bar{\mathbf{R}}$ to [-1,1].

- 1. Show that d is a metric on $\bar{\mathbf{R}}$.
- 2. Show that if $U \in \mathcal{T}_{\bar{\mathbf{R}}}$, then $\phi(U)$ is open in [-1,1]

3. Show that for all $U \in \mathcal{T}_{\bar{\mathbf{R}}}$ and $y \in \phi(U)$, there exists $\epsilon > 0$ such that:

$$\forall z \in [-1,1] , |z-y| < \epsilon \Rightarrow z \in \phi(U)$$

- 4. Show that $\mathcal{T}_{\bar{\mathbf{R}}} \subseteq \mathcal{T}_{\bar{\mathbf{R}}}^d$.
- 5. Show that for all $U \in \mathcal{T}^d_{\bar{\mathbf{R}}}$ and $x \in U$, there is $\epsilon > 0$ such that:

$$\forall y \in \bar{\mathbf{R}} , |\phi(x) - \phi(y)| < \epsilon \implies y \in U$$

- 6. Show that for all $U \in \mathcal{T}_{\bar{\mathbf{B}}}^d$, $\phi(U)$ is open in [-1,1].
- 7. Show that $\mathcal{T}_{\bar{\mathbf{R}}}^d \subseteq \mathcal{T}_{\bar{\mathbf{R}}}$
- 8. Prove the following theorem.

Theorem 13 The topological space $(\bar{\mathbf{R}}, \mathcal{T}_{\bar{\mathbf{R}}})$ is metrizable.

Definition 35 Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces. A map $f: \Omega \to S$ is said to be **measurable** with respect to \mathcal{F} and Σ , if and only if:

$$\forall B \in \Sigma \ , \ f^{-1}(B) \in \mathcal{F}$$

We Write $f:(\Omega, \mathcal{F}) \to (S, \Sigma)$ is measurable, as a way of emphasizing the two σ -algebras \mathcal{F} and Σ with respect to which f is measurable.

EXERCISE 10. Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces. Let S' be a set and $f: \Omega \to S$ be a map such that $f(\Omega) \subseteq S' \subseteq S$. We define Σ' as the trace of Σ on S', i.e. $\Sigma' = \Sigma_{|S'}$.

- 1. Show that for all $B \in \Sigma$, we have $f^{-1}(B) = f^{-1}(B \cap S')$
- 2. Show that $f:(\Omega,\mathcal{F})\to (S,\Sigma)$ is measurable, if and only if $f:(\Omega,\mathcal{F})\to (S',\Sigma')$ is itself measurable.
- 3. Let $f: \Omega \to \mathbf{R}^+$. Show that the following are equivalent:

(i)
$$f:(\Omega,\mathcal{F})\to(\mathbf{R}^+,\mathcal{B}(\mathbf{R}^+))$$
 is measurable

(ii)
$$f: (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R}))$$
 is measurable
(iii) $f: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable

EXERCISE 11. Let (Ω, \mathcal{F}) , (S, Σ) , (S_1, Σ_1) be three measurable spaces. let $f: (\Omega, \mathcal{F}) \to (S, \Sigma)$ and $g: (S, \Sigma) \to (S_1, \Sigma_1)$ be two measurable maps.

- 1. For all $B \subseteq S_1$, show that $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$
- 2. Show that $g \circ f : (\Omega, \mathcal{F}) \to (S_1, \Sigma_1)$ is measurable.

EXERCISE 12. Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces. Let $f: \Omega \to S$ be a map. We define:

$$\Gamma \stackrel{\triangle}{=} \{ B \in \Sigma , f^{-1}(B) \in \mathcal{F} \}$$

1. Show that $f^{-1}(S) = \Omega$.

- 2. Show that for all $B \subseteq S$, $f^{-1}(B^c) = (f^{-1}(B))^c$.
- 3. Show that if $B_n \subseteq S, n \ge 1$, then $f^{-1}(\bigcup_{n=1}^{+\infty} B_n) = \bigcup_{n=1}^{+\infty} f^{-1}(B_n)$
- 4. Show that Γ is a σ -algebra on S.
- 5. Prove the following theorem.

Theorem 14 Let (Ω, \mathcal{F}) and (S, Σ) be two measurable spaces, and \mathcal{A} be a set of subsets of S generating Σ , i.e. such that $\Sigma = \sigma(\mathcal{A})$. Then $f: (\Omega, \mathcal{F}) \to (S, \Sigma)$ is measurable, if and only if:

$$\forall B \in \mathcal{A}$$
 , $f^{-1}(B) \in \mathcal{F}$

EXERCISE 13. Let (Ω, \mathcal{T}) and (S, \mathcal{T}_S) be two topological spaces. Let $f: \Omega \to S$ be a map. Show that if $f: (\Omega, \mathcal{T}) \to (S, \mathcal{T}_S)$ is continuous, then $f: (\Omega, \mathcal{B}(\Omega)) \to (S, \mathcal{B}(S))$ is measurable.

EXERCISE 14. We define the following subsets of the power set $\mathcal{P}(\mathbf{R})$:

$$\mathcal{C}_{1} \stackrel{\triangle}{=} \{[-\infty, c] , c \in \mathbf{R}\}$$

$$\mathcal{C}_{2} \stackrel{\triangle}{=} \{[-\infty, c[, c \in \mathbf{R}\}$$

$$\mathcal{C}_{3} \stackrel{\triangle}{=} \{[c, +\infty] , c \in \mathbf{R}\}$$

$$\mathcal{C}_{4} \stackrel{\triangle}{=} \{[c, +\infty] , c \in \mathbf{R}\}$$

- 1. Show that C_2 and C_4 are subsets of $\mathcal{T}_{\bar{\mathbf{R}}}$.
- 2. Show that the elements of C_1 and C_3 are closed in $\bar{\mathbf{R}}$.
- 3. Show that for all $i = 1, 2, 3, 4, \sigma(C_i) \subseteq \mathcal{B}(\bar{\mathbf{R}})$.
- 4. Let U be open in \mathbf{R} . Explain why $U \cap \mathbf{R}$ is open in \mathbf{R} .

- 5. Show that any open subset of \mathbf{R} is a countable union of open bounded intervals in \mathbf{R} .
- 6. Let a < b, $a, b \in \mathbf{R}$. Show that we have:

$$]a,b[=\bigcup_{n=1}^{+\infty}]a,b-1/n]=\bigcup_{n=1}^{+\infty}[a+1/n,b[$$

- 7. Show that for all $i = 1, 2, 3, 4, |a, b| \in \sigma(\mathcal{C}_i)$.
- 8. Show that for all $i = 1, 2, 3, 4, \{\{-\infty\}, \{+\infty\}\} \subseteq \sigma(\mathcal{C}_i)$.
- 9. Show that for all i = 1, 2, 3, 4, $\sigma(C_i) = \mathcal{B}(\mathbf{R})$
- 10. Prove the following theorem.

Theorem 15 Let (Ω, \mathcal{F}) be a measurable space, and $f : \Omega \to \mathbf{R}$ be a map. The following are equivalent:

(i)
$$f:(\Omega,\mathcal{F})\to(\bar{\mathbf{R}},\mathcal{B}(\bar{\mathbf{R}}))$$
 is measurable

(ii)
$$\forall B \in \mathcal{B}(\bar{\mathbf{R}}), \{f \in B\} \in \mathcal{F}$$

(iii)
$$\forall c \in \mathbf{R} , \{f \leq c\} \in \mathcal{F}$$

$$(iv)$$
 $\forall c \in \mathbf{R} , \{f < c\} \in \mathcal{F}$

$$(v)$$
 $\forall c \in \mathbf{R} , \{c \le f\} \in \mathcal{F}$

$$(vi)$$
 $\forall c \in \mathbf{R} , \{c < f\} \in \mathcal{F}$

EXERCISE 15. Let (Ω, \mathcal{F}) be a measurable space. Let $(f_n)_{n\geq 1}$ be a sequence of measurable maps $f_n: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$. Let g and h be the maps defined by $g(\omega) = \inf_{n\geq 1} f_n(\omega)$ and $h(\omega) = \sup_{n\geq 1} f_n(\omega)$, for all $\omega \in \Omega$.

- 1. Let $c \in \mathbf{R}$. Show that $\{c \leq g\} = \bigcap_{n=1}^{+\infty} \{c \leq f_n\}$.
- 2. Let $c \in \mathbf{R}$. Show that $\{h \le c\} = \bigcap_{n=1}^{+\infty} \{f_n \le c\}$.

3. Show that $g, h: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ are measurable.

Definition 36 Let $(v_n)_{n\geq 1}$ be a sequence in $\bar{\mathbf{R}}$. We define:

$$u \stackrel{\triangle}{=} \liminf_{n \to +\infty} v_n \stackrel{\triangle}{=} \sup_{n \ge 1} \left(\inf_{k \ge n} v_k \right)$$

and:

$$w \stackrel{\triangle}{=} \limsup_{n \to +\infty} v_n \stackrel{\triangle}{=} \inf_{n \ge 1} \left(\sup_{k \ge n} v_k \right)$$

Then, $u, w \in \overline{\mathbf{R}}$ are respectively called **lower limit** and **upper limit** of the sequence $(v_n)_{n\geq 1}$.

EXERCISE 16. Let $(v_n)_{n\geq 1}$ be a sequence in $\bar{\mathbf{R}}$. for $n\geq 1$ we define $u_n=\inf_{k\geq n}v_k$ and $w_n=\sup_{k\geq n}v_k$. Let u and w be the lower limit and upper limit of $(v_n)_{n\geq 1}$, respectively.

1. Show that $u_n \leq u_{n+1} \leq u$, for all $n \geq 1$.

- 2. Show that $w \leq w_{n+1} \leq w_n$, for all $n \geq 1$.
- 3. Show that $u_n \to u$ and $w_n \to w$ as $n \to +\infty$.
- 4. Show that $u_n \leq v_n \leq w_n$, for all $n \geq 1$.
- 5. Show that $u \leq w$.
- 6. Show that if u = w then $(v_n)_{n \ge 1}$ converges to a limit $v \in \bar{\mathbf{R}}$, with u = v = w.
- 7. Show that if $a, b \in \mathbf{R}$ are such that u < a < b < w then for all $n \ge 1$, there exist $N_1, N_2 \ge n$ such that $v_{N_1} < a < b < v_{N_2}$.
- 8. Show that if $a, b \in \mathbf{R}$ are such that u < a < b < w then there exist two strictly increasing sequences of integers $(n_k)_{k\geq 1}$ and $(m_k)_{k\geq 1}$ such that for all $k\geq 1$, we have $v_{n_k} < a < b < v_{m_k}$.
- 9. Show that if $(v_n)_{n\geq 1}$ converges to some $v\in \bar{\mathbf{R}}$, then u=w.

Theorem 16 Let $(v_n)_{n\geq 1}$ be a sequence in $\bar{\mathbf{R}}$. Then, the following are equivalent:

(i)
$$\lim_{n \to +\infty} \inf v_n = \lim_{n \to +\infty} \sup v_n$$
(ii)
$$\lim_{n \to +\infty} v_n \text{ exists in } \bar{\mathbf{R}}.$$

in which case:

$$\lim_{n \to +\infty} v_n = \liminf_{n \to +\infty} v_n = \limsup_{n \to +\infty} v_n$$

EXERCISE 17. Let $f, g: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space.

- 1. Show that $\{f < g\} = \bigcup_{r \in \mathbf{Q}} (\{f < r\} \cap \{r < g\}).$
- 2. Show that the sets $\{f < g\}, \{f > g\}, \{f = g\}, \{f \le g\}, \{f \ge g\}$ belong to the σ -algebra \mathcal{F} .

EXERCISE 18. Let (Ω, \mathcal{F}) be a measurable space. Let $(f_n)_{n\geq 1}$ be a sequence of measurable maps $f_n: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$. We define $g = \liminf f_n$ and $h = \limsup f_n$ in the obvious way:

$$\forall \omega \in \Omega , g(\omega) \stackrel{\triangle}{=} \liminf_{n \to +\infty} f_n(\omega)$$

$$\forall \omega \in \Omega , h(\omega) \stackrel{\triangle}{=} \limsup_{n \to +\infty} f_n(\omega)$$

- 1. Show that $g, h: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ are measurable.
- 2. Show that $g \leq h$, i.e. $\forall \omega \in \Omega$, $g(\omega) \leq h(\omega)$.
- 3. Show that $\{g = h\} \in \mathcal{F}$.
- 4. Show that $\{\omega : \omega \in \Omega , \lim_{n \to +\infty} f_n(\omega) \text{ exists in } \bar{\mathbf{R}} \} \in \mathcal{F}$.
- 5. Suppose $\Omega = \{g = h\}$, and let $f(\omega) = \lim_{n \to +\infty} f_n(\omega)$, for all $\omega \in \Omega$. Show that $f: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable.

EXERCISE 19. Let $f, g: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space.

- 1. Show that $-f, |f|, f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$ are measurable with respect to \mathcal{F} and $\mathcal{B}(\bar{\mathbf{R}})$.
- 2. Let $a \in \bar{\mathbf{R}}$. Explain why the map a+f may not be well defined.
- 3. Show that $(a+f): (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable, whenever $a \in \mathbf{R}$.
- 4. Show that $(a.f): (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable, for all $a \in \bar{\mathbf{R}}$. (Recall the convention $0.\infty = 0$).
- 5. Explain why the map f + g may not be well defined.
- 6. Suppose that $f \geq 0$ and $g \geq 0$, i.e. $f(\Omega) \subseteq [0, +\infty]$ and also $g(\Omega) \subseteq [0, +\infty]$. Show that $\{f + g < c\} = \{f < c g\}$, for all $c \in \mathbf{R}$. Show that $f + g : (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable.

7. Show that $f + g : (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable whenever f + g is well-defined, i.e. when the following condition holds:

$$(\{f=+\infty\}\cap\{g=-\infty\})\cup(\{f=-\infty\}\cap\{g=+\infty\})=\emptyset$$

- 8. Show that $1/f:(\Omega,\mathcal{F})\to(\bar{\mathbf{R}},\mathcal{B}(\bar{\mathbf{R}}))$ is measurable, in the case when $f(\Omega)\subseteq\mathbf{R}\setminus\{0\}$.
- 9. Suppose that f is \mathbf{R} -valued. Show that \bar{f} defined by $\bar{f}(\omega) = f(\omega)$ if $f(\omega) \neq 0$ and $\bar{f}(\omega) = 1$ if $f(\omega) = 0$, is measurable with respect to \mathcal{F} and $\mathcal{B}(\bar{\mathbf{R}})$.
- 10. Suppose f and g take values in \mathbf{R} . Let \bar{f} be defined as in 9. Show that for all $c \in \mathbf{R}$, the set $\{fg < c\}$ can be expressed as: $(\{f>0\} \cap \{g < c/\bar{f}\}) \uplus (\{f<0\} \cap \{g > c/\bar{f}\}) \uplus (\{f=0\} \cap \{f < c\})$
- 11. Show that $fg:(\Omega,\mathcal{F})\to(\bar{\mathbf{R}},\mathcal{B}(\bar{\mathbf{R}}))$ is measurable, in the case
- 11. Show that $fg:(\Omega,\mathcal{F})\to (\mathbf{R},\mathcal{B}(\mathbf{R}))$ is measurable, in the case when f and g take values in \mathbf{R} .

EXERCISE 20. Let $f, g: (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ be two measurable maps, where (Ω, \mathcal{F}) is a measurable space. Let \bar{f}, \bar{g} , be defined by:

$$\bar{f}(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{ccc} f(\omega) & \text{if} & f(\omega) \not\in \{-\infty, +\infty\} \\ 1 & \text{if} & f(\omega) \in \{-\infty, +\infty\} \end{array} \right.$$

 $\overline{g}(\omega)$ being defined in a similar way. Consider the partitions of Ω , $\Omega=A_1 \uplus A_2 \uplus A_3 \uplus A_4 \uplus A_5$ and $\Omega=B_1 \uplus B_2 \uplus B_3 \uplus B_4 \uplus B_5$, where $A_1=\{f\in]0,+\infty[\},\ A_2=\{f\in]-\infty,0[\},\ A_3=\{f=0\},\ A_4=\{f=-\infty\},\ A_5=\{f=+\infty\}$ and B_1,B_2,B_3,B_4,B_5 being defined in a similar way with g. Recall the conventions $0\times(+\infty)=0$, $(-\infty)\times(+\infty)=(-\infty)$, etc. . .

- 1. Show that \bar{f} and \bar{g} are measurable with respect to \mathcal{F} and $\mathcal{B}(\bar{\mathbf{R}})$.
- 2. Show that all A_i 's and B_j 's are elements of \mathcal{F} .

3. Show that for all $B \in \mathcal{B}(\bar{\mathbf{R}})$:

$$\{fg \in B\} = \biguplus_{i,j=1}^{5} (A_i \cap B_j \cap \{fg \in B\})$$

- 4. Show that $A_i \cap B_j \cap \{fg \in B\} = A_i \cap B_j \cap \{\bar{f}\bar{g} \in B\}$, in the case when $1 \le i \le 3$ and $1 \le j \le 3$.
- 5. Show that $A_i \cap B_j \cap \{fg \in B\}$ is either equal to \emptyset or $A_i \cap B_j$, in the case when $i \geq 4$ or $j \geq 4$.
- 6. Show that $fg:(\Omega,\mathcal{F})\to(\bar{\mathbf{R}},\mathcal{B}(\bar{\mathbf{R}}))$ is measurable.

Definition 37 Let (Ω, \mathcal{T}) be a topological space, and $A \subseteq \Omega$. We call **closure** of A in Ω , denoted \overline{A} , the set defined by:

$$\bar{A} \stackrel{\triangle}{=} \{ x \in \Omega : x \in U \in \mathcal{T} \Rightarrow U \cap A \neq \emptyset \}$$

EXERCISE 21. Let (E, \mathcal{T}) be a topological space, and $A \subseteq E$. Let \bar{A} be the closure of A.

- 1. Show that $A \subseteq \bar{A}$ and that \bar{A} is closed.
- 2. Show that if B is closed and $A \subseteq B$, then $\bar{A} \subseteq B$.
- 3. Show that \bar{A} is the smallest closed set in E containing A.
- 4. Show that A is closed if and only if $A = \bar{A}$.
- 5. Show that if (E, \mathcal{T}) is metrizable, then:

$$\bar{A} = \{x \in E \ : \ \forall \epsilon > 0 \ , \ B(x,\epsilon) \cap A \neq \emptyset \}$$

where $B(x, \epsilon)$ is relative to any metric d such that $\mathcal{T}_E^d = \mathcal{T}$.

EXERCISE 22. Let (E,d) be a metric space. Let $A\subseteq E$. For all $x\in E$, we define:

$$d(x, A) \stackrel{\triangle}{=} \inf\{d(x, y) : y \in A\} \stackrel{\triangle}{=} \Phi_A(x)$$

where it is understood that $\inf \emptyset = +\infty$.

- 1. Show that for all $x \in E$, $d(x, A) = d(x, \bar{A})$.
- 2. Show that d(x, A) = 0, if and only if $x \in \bar{A}$.
- 3. Show that for all $x, y \in E$, $d(x, A) \le d(x, y) + d(y, A)$.
- 4. Show that if $A \neq \emptyset$, $|d(x, A) d(y, A)| \leq d(x, y)$.
- 5. Show that $\Phi_A: (E, \mathcal{T}_E^d) \to (\bar{\mathbf{R}}, \mathcal{T}_{\bar{\mathbf{R}}})$ is continuous.
- 6. Show that if A is closed, then $A = \Phi_A^{-1}(\{0\})$

EXERCISE 23. Let (Ω, \mathcal{F}) be a measurable space. Let $(f_n)_{n\geq 1}$ be a sequence of measurable maps $f_n: (\Omega, \mathcal{F}) \to (E, \mathcal{B}(E))$, where (E, d) is a metric space. We assume that for all $\omega \in \Omega$, the sequence $(f_n(\omega))_{n\geq 1}$ converges to some $f(\omega) \in E$.

- 1. Explain why $\liminf f_n$ and $\limsup f_n$ may not be defined in an arbitrary metric space E.
- 2. Show that $f:(\Omega,\mathcal{F})\to (E,\mathcal{B}(E))$ is measurable, if and only if $f^{-1}(A)\in\mathcal{F}$ for all closed subsets A of E.
- 3. Show that for all A closed in E, $f^{-1}(A) = (\Phi_A \circ f)^{-1}(\{0\})$, where the map $\Phi_A : E \to \bar{\mathbf{R}}$ is defined as in exercise (22).
- 4. Show that $\Phi_A \circ f_n : (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable.
- 5. Show that $f:(\Omega,\mathcal{F})\to (E,\mathcal{B}(E))$ is measurable.

Theorem 17 Let (Ω, \mathcal{F}) be a measurable space. Let $(f_n)_{n\geq 1}$ be a sequence of measurable maps $f_n: (\Omega, \mathcal{F}) \to (E, \mathcal{B}(E))$, where (E, d) is a metric space. Then, if the limit $f = \lim f_n$ exists on Ω , the map $f: (\Omega, \mathcal{F}) \to (E, \mathcal{B}(E))$ is itself measurable.

Definition 38 The usual topology on C, the set of complex numbers, is defined as the metric topology associated with d(z, z') = |z - z'|.

EXERCISE 24. Let $f:(\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a measurable map, where (Ω, \mathcal{F}) is a measurable space. Let u = Re(f) and v = Im(f). Show that $u, v, |f|:(\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ are all measurable.

EXERCISE 25. Define the subset of the power set $\mathcal{P}(\mathbf{C})$:

$$\mathcal{C} \stackrel{\triangle}{=} \{]a, b[\times]c, d[\ ,\ a, b, c, d \in \mathbf{R} \}$$

where it is understood that:

$$]a, b[\times]c, d[\stackrel{\triangle}{=} \{z = x + iy \in \mathbf{C}, (x, y) \in]a, b[\times]c, d[\}$$

- 1. Show that any element of C is open in C.
- 2. Show that $\sigma(\mathcal{C}) \subseteq \mathcal{B}(\mathbf{C})$.
- 3. Let $z = x + iy \in \mathbb{C}$. Show that if $|x| < \eta$ and $|y| < \eta$ then we have $|z| < \sqrt{2}\eta$.

- 4. Let U be open in \mathbb{C} . Show that for all $z \in U$, there are rational numbers a_z, b_z, c_z, d_z such that $z \in]a_z, b_z[\times]c_z, d_z[\subseteq U]$.
- 5. Show that U can be written as $U = \bigcup_{n=1}^{+\infty} A_n$ where $A_n \in \mathcal{C}$.
- 6. Show that $\sigma(\mathcal{C}) = \mathcal{B}(\mathbf{C})$.
- 7. Let (Ω, \mathcal{F}) be a measurable space, and $u, v : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be two measurable maps. Show that $u+iv : (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is measurable.