Probability Tutorials: Notations # 1. Tutorial 1 $\stackrel{\triangle}{=}$: equality which is true by definition, hence always true. Ω : an arbitrary set. $\mathcal{P}(\Omega)$: the power set of Ω , i.e. the set of all subsets of Ω . \mathcal{D} : a set of subsets of Ω , also a Dynkin system on Ω . \mathcal{F} : a set of subsets of Ω , also a σ -algebra on Ω . $\Omega \in \mathcal{D}$: Ω is an element of the set \mathcal{D} . A, B: arbitrary subsets of Ω . $(A_n)_{n\geq 1}$: a sequence of subsets of Ω . $A \subseteq \overline{B}$: A is a subset of B, i.e. $x \in A \Rightarrow x \in B$. $B \setminus A$: set difference defined by $B \setminus A = \{x \in B : x \notin A\}$. $\bigcup_{n=1}^{+\infty} A_n : \text{ union of all } A_n \text{'s}, \bigcup_{n=1}^{+\infty} A_n = \{x : \exists n \ge 1, x \in A_n\}.$ A^c : the complement of A in Ω , $A^c = \{x \in \Omega : x \notin A\}$. $A \cup B$: union of A and B, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$ $A \cap B$: intersection of A and B, $A \cap B = \{x : x \in A \text{ and } x \in B\}.$ $(\mathcal{D}_i)_{i\in I}$: a family of Dynkin systems on Ω , indexed by a set I. $\bigcap_{i \in I} \mathcal{D}_i : \text{ intersection of all } \mathcal{D}_i \text{'s}, \, \bigcap_{i \in I} \mathcal{D}_i = \{A : \forall i \in I, A \in \mathcal{D}_i\}.$ $(\mathcal{F}_i)_{i\in I}$: a family of σ -algebras on Ω , indexed by a set I. $\cap_{i\in I}\mathcal{F}_i: \text{ intersection of all } \mathcal{F}_i\text{'s}, \cap_{i\in I}\mathcal{F}_i=\{A: \forall i\in I, A\in\mathcal{F}_i\}.$ \mathcal{A} : a set of subsets of Ω , a subset of $\mathcal{P}(\Omega)$. D(A): the set of all Dynkin systems on Ω , containing A. $\mathcal{D}(\mathcal{A})$: the Dynkin system on Ω , generated by \mathcal{A} . $\sigma(\mathcal{A})$: the $\sigma\text{-algebra}$ on $\Omega,$ generated by $\mathcal{A}.$ \mathcal{C} : a set of subsets of Ω , also a π -system on Ω . # 2. Tutorial 2 Ω : an arbitrary set. $\mathcal{P}(\Omega)$: the power set of Ω , i.e. the set of all subsets of Ω . \emptyset : the empty set, i.e. the only set with no elements. $B \setminus A$: set difference defined by $B \setminus A = \{x \in B : x \notin A\}$. $\ensuremath{\,\,\sqcup\,\,}$: union of pairwise disjoint sets. \mathcal{R} : a set of subsets of Ω , also a ring on Ω . $(\mathcal{R}_i)_{i\in I}$: a family of rings on Ω , indexed by a set I. \mathcal{A} : a set of subsets of Ω , a subset of $\mathcal{P}(\Omega)$. $R(\mathcal{A})$: the set of all rings on Ω , containing \mathcal{A} . $\mathcal{R}(\mathcal{A})$: the ring on Ω , generated by \mathcal{A} . μ : a measure defined on a set of subsets of Ω . $[0, +\infty]$: the set $\mathbf{R}^+ \cup \{+\infty\}$. $\mathcal{R}(\mathcal{S})$: the ring on Ω , generated by the semi-ring \mathcal{S} . $\bar{\mu}, \bar{\mu}'$: measures defined on the ring $\mathcal{R}(\mathcal{S})$. $\bar{\mu}_{|\mathcal{S}}, \bar{\mu}'_{|\mathcal{S}}$: the restrictions of $\bar{\mu}$ and $\bar{\mu}'$ to the smaller domain \mathcal{S} . μ^* : an outer-measure on Ω . $\Sigma(\mu^*), \Sigma$: the σ -algebra on Ω , associated with μ^* . A, B, T: arbitrary subsets of Ω . A^c : the complement of A in Ω , $A^c = \{x \in \Omega : x \notin A\}$. $\mu_{|\Sigma}^*$: the restriction of μ^* to the smaller domain Σ . $\sigma(\mathcal{R}), \ \sigma(\mathcal{R}(\mathcal{S})), \ \sigma(\mathcal{S}) : \sigma$ -algebras on Ω , generated by $\mathcal{R}, \ \mathcal{R}(\mathcal{S}), \ \mathcal{S}$. μ' : a measure defined on $\sigma(\mathcal{R})$, or $\sigma(\mathcal{S})$. $\mu'_{|\mathcal{R}}, \mu'_{|\mathcal{S}}$: the restrictions of μ' to the smaller domains \mathcal{R} and \mathcal{S} . Ω : an arbitrary set. $\mathcal{P}(\Omega)$: the power set of Ω , i.e. the set of all subsets of Ω . \mathcal{A} : a set of subsets of Ω . μ : a finitely additive map on \mathcal{A} or a measure on \mathcal{F} . \uplus : a union of pairwise disjoint sets. A, A_i, A_n : arbitrary substets of Ω . $a \lor b$: the largest of a and b, $a \lor b = \max(a, b)$. $a \wedge b$: the smallest of a and b, $a \wedge b = \min(a, b)$. S: the semi-ring $S = \{ [a, b], a, b \in \mathbb{R} \}$, or a semi-ring on Ω . $\mathcal{R}(\mathcal{S})$: the ring generated by \mathcal{S} . $\bar{\mu}$: a finitely additive map defined on $\mathcal{R}(\mathcal{S})$. F: a right-continuous and non-decreasing map defined on \mathbf{R} or \mathbf{R}^+ . \mathcal{T} : a topology on Ω . (Ω, \mathcal{T}) : a topological space. $\mathcal{B}(\Omega)$: the Borel σ -algebra on (Ω, \mathcal{T}) . \mathbf{R} : the real line $\mathbf{R} =]-\infty, +\infty[$. \mathbf{R}^+ : the subset of \mathbf{R} , $\mathbf{R}^+ = [0, +\infty[$. $\mathcal{T}_{\mathbf{R}}$: the usual topology on $\mathbf{R}.$ $\mathcal{B}(\mathbf{R})$: the Borel σ -algebra on \mathbf{R} . $\mathcal{B}(\mathbf{R}^+)$: the Borel σ -algebra on \mathbf{R}^+ . \mathbf{Q} : the set of all rational numbers. $\sigma(\mathcal{S})$: the σ -algebra generated by \mathcal{S} . \mathcal{F} : a σ -algebra on Ω . (Ω, \mathcal{F}) : a measurable space. $(\Omega, \mathcal{F}, \mu)$: a measure space. $A_n \uparrow A$: for all $n \ge 1$, $A_n \subseteq A_{n+1}$ and $A = \bigcup_{n=1}^{+\infty} A_n$. $A_n \downarrow A$: for all $n \geq 1$, $A_{n+1} \subseteq A_n$ and $A = \bigcap_{n=1}^{+\infty} A_n$. \mathcal{D}_n : a Dynkin system on **R** or **R**⁺. $\mu_1, \, \mu_2$: measures defined on $\mathcal{B}(\mathbf{R})$ or $\mathcal{B}(\mathbf{R}^+)$. dF: the Stieltjes measure on $\mathcal{B}(\mathbf{R})$ or $\mathcal{B}(\mathbf{R}^+)$ associated with F. dx: the Lebesgue measure on $\mathcal{B}(\mathbf{R})$. $F(x_0-)$: the left limit of F at $x=x_0$. Ω' : a subset of Ω . $\mathcal{A}_{|\Omega'}$: the trace of \mathcal{A} on Ω' , $\mathcal{A}_{|\Omega'} = \{A \cap \Omega' : A \in \mathcal{A}\}.$ Tutorial 4: Tutorial 4 $\mathcal{T}_{|\Omega'|}$: the topology on Ω' , induced by the topology \mathcal{T} on Ω . $\sigma(\mathcal{A})$: the σ -algebra on Ω generated by \mathcal{A} . $\sigma(\mathcal{A}_{|\Omega'})$: the σ -algebra on Ω' generated by $\mathcal{A}_{|\Omega'}$. $\sigma(\mathcal{A})_{|\Omega'}$: the trace of $\sigma(\mathcal{A})$ on Ω' . $\mathcal{B}(\Omega)_{|\Omega'|}$: the trace of $\mathcal{B}(\Omega)$ on Ω' . $\mathcal{B}(\Omega')$: the Borel σ -algebra on $(\Omega', \mathcal{T}_{|\Omega'})$. $\mathcal{F}_{|\Omega'}$: the trace of \mathcal{F} on Ω' . $\mu_{|\Omega'}$: the restriction of μ to $\mathcal{F}_{|\Omega'}$, when $\Omega' \in \mathcal{F}$. #### 4. Tutorial 4 $f: A \to B$: a map defined on A with values in B. f(A'): direct image of A' by f, $f(A') = \{f(x) : x \in A'\}$. $f^{-1}(B')$: inverse image of B' by $f, f^{-1}(B') = \{x \in A : f(x) \in B'\}$. $\{f \in B'\}$: same as $f^{-1}(B')$. $(\Omega, \mathcal{T}), (S, \mathcal{T}_S)$: topological spaces. $(E,d), (F,\delta)$: metric spaces. $B(x,\epsilon)$: the open ball on $E,\,B(x,\epsilon)=\{y\in E:d(x,y)<\epsilon\}.$ \mathcal{T}_E^d : the metric topology on E, associated with the metric d. $d_{|F|}$: restriction of the metric d to $F \times F$, when $F \subseteq E$. \mathcal{T}_F , $(\mathcal{T}_E^d)_{|F|}$: the topology on F, induced by the metric topology \mathcal{T}_E^d . $\mathcal{I}_F',\,\mathcal{I}_F^{d_{|F}}$: the metric topology on F, associated with the metric $d_{|F}.$ $\bar{\mathbf{R}}$: the extended real line, $\bar{\mathbf{R}} = \mathbf{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$. $\mathcal{T}_{\bar{\mathbf{R}}}$: the usual topology on $\bar{\mathbf{R}}.$ $\mathcal{T}_{\mathbf{R}}$: the usual topology on \mathbf{R} . $(\mathcal{T}_{\bar{\mathbf{R}}})_{|\mathbf{R}}$: the topology on \mathbf{R} , induced by the usual topology on $\bar{\mathbf{R}}$. $\mathcal{B}(\mathbf{R})$: the Borel σ -algebra on \mathbf{R} . $\mathcal{B}(\mathbf{R})$: the Borel σ -algebra on \mathbf{R} . $\mathcal{B}(\bar{\mathbf{R}})_{|\mathbf{R}}$: the trace of $\mathcal{B}(\bar{\mathbf{R}})$ on \mathbf{R} . $\mathcal{T}^d_{\bar{\mathbf{R}}}$: the metric topology on $\bar{\mathbf{R}}$ associated with the metric d. $(\widetilde{\Omega}, \mathcal{F}), (S, \Sigma), (S_1, \Sigma_1)$: measurable spaces. Σ' , $\Sigma_{|S'}$: the trace of Σ on S'. $g \circ f$: the composition of g and f, defined by $g \circ f(x) = g(f(x))$. A: a set of subsets of S. $\sigma(\mathcal{A})$: the σ -algebra on S generated by \mathcal{A} . ``` C_1, C_2, C_3, C_4: set of subsets of \bar{\mathbf{R}}. \{f < c\}: the inverse image of [-\infty, c] by f. \{f < c\}: the inverse image of [-\infty, c] by f. \{c \leq f\}: the inverse image of [c, +\infty] by f. \{c < f\}: the inverse image of [c, +\infty] by f. \inf_{n\geq 1} v_n: the greatest lower-bound of \{v_n: n\geq 1\}. \sup_{n>1} v_n: the smallest upper-bound of \{v_n : n \geq 1\}. \liminf v_n: the lower limit of (v_n)_{n\geq 1} as n\to +\infty. \limsup v_n: the upper limit of (v_n)_{n\geq 1} as n\to +\infty. \lim v_n: the limit of (v_n)_{n\geq 1} as n\to +\infty. f^+: the positive part of f, f^+ = \max(f, 0). f^-: the negative part of f, f^- = \max(-f, 0). \bar{A}: the closure of A in (\Omega, \mathcal{T}). d(x, A): the distance from x to A, d(x, A) = \inf\{d(x, y) : y \in A\}. \lim f_n: simple limit of (f_n)_{n>1}, defined by (\lim f_n)(\omega) = \lim f_n(\omega). C: the set of complex numbers. Re(f): the real part of f. Im(f): the imaginary part of f. ``` ``` (\Omega, \mathcal{F}, \mu): an arbitrary measure space. 1_A: the characteristic function of A \subseteq \Omega. \forall: a union of pairwise disjoint sets. I^{\mu}(s): the integral w.r. to \mu of the simple function s on (\Omega, \mathcal{F}). \int f d\mu: the Lebesgue integral of f with respect to \mu. v_n \uparrow v: for all n \ge 1, v_n \le v_{n+1} and v = \sup_{n \ge 1} v_n. f_n \uparrow f: for all \omega \in \Omega, f_n(\omega) \uparrow f(\omega). A_n \uparrow A: for all n \geq 1, A_n \subseteq A_{n+1} and A = \bigcup_{n=1}^{+\infty} A_n. \mathcal{P}(\omega), \mu-a.s.: the property \mathcal{P} holds \mu-almost surely. \mathcal{F}_{|A}: the trace of \mathcal{F} on A \subseteq \Omega. \mu_{|A}: the restriction of \mu to \mathcal{F}_{|A}, when A \in \mathcal{F}. f_{|A}: the restriction of f to A. \mu^A: the measure defined on \mathcal{F} by \mu^A(E) = \mu(A \cap E). \int_A f d\mu: the partial Lebesgue integral of f over A with respect to \mu. L^1_{\mathbf{R}}(\Omega, \mathcal{F}, \mu): set of R-valued, measurable maps with \int |f| d\mu < +\infty. L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu): set of C-valued, measurable maps with \int |f| d\mu < +\infty. ``` ``` I: an arbitrary non-empty set. (\Omega_i)_{i\in I}: a family of sets indexed by I. \prod_{i\in I}\Omega_i: the cartesian product of the family (\Omega_i)_{i\in I}. \Omega^{I}: the cartesian product when \Omega_{i} = \Omega, for all i \in I. \prod_{n=1}^{+\infty} \Omega_n: the cartesian product when I = \mathbf{N}^*. \Omega_1 \times \ldots \times \Omega_n: the cartesian product when I = \mathbf{N}_n. N: the set N = \{0, 1, 2, \ldots\}. N^*: the set N^* = \{1, 2, 3, \ldots\}. N_n: the set N_n = \{1, 2, ..., n\}. (I_{\lambda})_{{\lambda}\in\Lambda}: a partition of the set I. (\mathcal{E}_i)_{i\in I}: a family, where each \mathcal{E}_i is a set of subsets of \Omega_i. \prod_{i\in I} A_i: a rectangle of the family (\mathcal{E}_i)_{i\in I}. \coprod_{i\in I} \mathcal{E}_i: the set of all rectangles of the family (\mathcal{E}_i)_{i\in I}. \mathcal{E}_1 \coprod \ldots \coprod \mathcal{E}_n: the set of all rectangles when I = \mathbf{N}_n. (\Omega_i, \mathcal{F}_i)_{i \in I}: a family of measurable spaces indexed by I. \coprod_{i\in I} \mathcal{F}_i: the set of measurable rectangles, the rectangles of (\mathcal{F}_i)_{i\in I}. ``` $\bigotimes_{i\in I} \mathcal{F}_i$: the product σ -algebra of $(\mathcal{F}_i)_{i\in I}$ on $\Pi_{i\in I}\Omega_i$. $\sigma(\coprod_{i\in I} \mathcal{F}_i)$: the σ -algebra generated by the measurable rectangles. $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$: the product σ -algebra when $I = \mathbf{N}_n$. $\sigma(\mathcal{E}_i)$: the σ -algebra on Ω_i , generated by \mathcal{E}_i . $\bigotimes_{i \in I} \sigma(\mathcal{E}_i)$: the product σ -algebra of $(\sigma(\mathcal{E}_i))_{i \in I}$ on $\Pi_{i \in I} \Omega_i$. $\coprod_{i\in I} \sigma(\mathcal{E}_i)$: the set of measurable rectangles of $(\sigma(\mathcal{E}_i))_{i\in I}$. $\mathcal{T}_{\mathbf{R}}$: the usual toplogy on \mathbf{R} . $\mathcal{T}_{\mathbf{R}} \coprod \ldots \coprod \mathcal{T}_{\mathbf{R}}$: set of rectangles when $I = \mathbf{N}_n$ and $\mathcal{E}_i = \mathcal{T}_{\mathbf{R}}$. \mathcal{A} : a set of subsets of Ω . $\mathcal{T}(\mathcal{A})$: the topology on Ω , generated by \mathcal{A} . $(\Omega_i, \mathcal{T}_i)_{i \in I}$: a family of topological spaces indexed by I. $\coprod_{i\in I} \mathcal{T}_i$: the set of rectangles of $(\mathcal{T}_i)_{i\in I}$. $\bigcirc_{i\in I}\mathcal{T}_i$: the product topology of $(\mathcal{T}_i)_{i\in I}$ on $\Pi_{i\in I}\Omega_i$. $\mathcal{B}(\Omega_i)$: the Borel σ -algebra on $(\Omega_i, \mathcal{T}_i)$. $\bigotimes_{i \in I} \mathcal{B}(\Omega_i)$: product σ -algebra of $(\mathcal{B}(\Omega_i))_{i \in I}$ on $\Pi_{i \in I} \Omega_i$. \mathcal{H} : a countable base of (Ω, \mathcal{T}) . $\mathcal{B}(\Pi_{i\in I}\Omega_i)$: the Borel σ -algebra for the product topology. ``` E^{\omega_1}: \omega_1-section of a subset E of \Omega_1 \times \Omega_2. \mathcal{F}_1 \coprod \mathcal{F}_2: set of measurable rectangles of \mathcal{F}_1 and \mathcal{F}_2. \mathcal{F}_1 \otimes \mathcal{F}_2: product \sigma-algebra of \mathcal{F}_1 and \mathcal{F}_2. \mathcal{B}(E): Borel \sigma-algebra on a metric space (E,d). \Omega_n \uparrow \Omega: for all n \geq 1, \Omega_n \subseteq \Omega_{n+1} and \Omega = \bigcup_{n=1}^{+\infty} \Omega_n. \mu_1 \otimes \ldots \otimes \mu_n: product of \sigma-finite measures. dx^n: the Lebesgue measure on (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)). \mathbf{N}_n: the set \{1,\ldots,n\}. \sigma: a permutation, i.e. a bijection \sigma:\mathbf{N}_n \to \mathbf{N}_n. f_p \uparrow f: For all p \geq 1, f_p \leq f_{p+1} and f = \lim f_p. \int_{\Omega_n} f(\omega, x) d\mu_2(x): the integral of f(\omega, \bullet) w.r. to \mu_2, \omega \in \Omega_1. ``` # 8. Tutorial 8 $\lim_{x \downarrow \downarrow x_0} \phi(x)$: the limit of $\phi(x)$ as $x \to x_0$ with $x_0 < x$. $\mathcal{T}_{|K}$: the induced topology on K. $\delta(A)$: the diameter of a set A. $\inf_{x\in\Omega} f(x)$: the infimum of $f(\Omega)$. $\sup_{x\in\Omega} f(x)$: the supremum of $f(\Omega)$. f'(c): the derivative of f evaluated at c. $f^{(k)}(a)$: the k^{th} derivative of f evaluated at a. C^n : [of class] for all $k \leq n$, $f^{(k)}$ exists and is continuous. (Ω, \mathcal{F}, P) : a probability space. (S,Σ) : a measurable space. E[X]: the expectation of the random variable X. $\phi \circ X$: the composition $\phi \circ X(\omega) = \phi(X(\omega))$. # 9. Tutorial 9 $(\Omega, \mathcal{F}, \mu)$: a measure space. $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$: set of **R**-valued measurable maps f, with $||f||_p < +\infty$. $L^{p}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$: set of C-valued measurable maps f, with $||f||_{p} < +\infty$. $||f||_p : p\text{-norm of } f$. For $p \in [1, +\infty[, ||f||_p = (\int |f|^p d\mu)^{1/p}]$. $||f||_{\infty} : \infty\text{-norm of } f$. $||f||_{\infty} = \inf\{M \in \mathbf{R}^+ : |f| \le M, \mu\text{-a.s.}\}$. $B(f,\epsilon)$: the open ball in $L^p_{\mathbf{R}}(\Omega,\mathcal{F},\mu)$ or $L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$. $x_n \overset{\mathcal{T}}{\to} x: (x_n)_{n\geq 1}$ converges to x, with respect to the topology \mathcal{T} . $f_n \overset{L^p}{\to} f: (f_n)_{n\geq 1}$ converges to f in L^p . $||f_n - f||_p \to 0$. $f_n \to f: (f_n)_{n\geq 1}$ converges to f, simply: $f_n(x) \to f(x)$ for all x. $f_n \to f$, μ -a.s. : $f_n(x) \to f(x)$ for μ -almost all x. $(f_{n_k})_{k\geq 1}:$ a sub-sequence of $(f_n)_{n\geq 1}$. # 10. Tutorial 10 \mathbf{K} : the field \mathbf{R} or \mathbf{C} . \mathbf{N}^* : the set of positive integers, $\mathbf{N}^* = \{1, 2, 3, \ldots\}.$ $\mathcal{T}_{\mathbf{R}^n}$: usual topology on \mathbf{R}^n . $\mathcal{T}_{\bar{\mathbf{R}}}$: usual topology on $\bar{\mathbf{R}}$. $x_n \xrightarrow{\mathcal{T}} x$: convergence with respect to a topology \mathcal{T} . $d_{\mathbf{C}^n}$: usual metric on \mathbf{C}^n . $d_{\mathbf{R}^n}$: usual metric on \mathbf{R}^n . $\delta(A)$: diameter of A, $\delta(A) = \sup\{d(x, y) : x, y \in A\}$. ``` \bar{F}: closure of the set F. ``` \bar{z} : complex conjugate of z. If z = a + ib, $\bar{z} = a - ib$. $\langle \cdot, \cdot \rangle$: an inner-product on a **K**-vector space. $\|\cdot\|$: the norm induced by an inner product, $\|\cdot\| = \sqrt{\langle\cdot,\cdot\rangle}$. $\mathcal{T}_{\langle\cdot,\cdot\rangle}$: norm topology induced by an inner-product. \mathcal{G}^{\perp} : orthogonal of a set \mathcal{G} w.r. to some inner-product. [f]: μ -almost sure equivalence class of f in $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$. # 11. Tutorial 11 \mathbf{N}^* : the set of positive integers $\mathbf{N}^* = \{1, 2, 3, \ldots\}.$ **Z**: the set of integers **Z** = $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$. (Ω, \mathcal{F}) : a measurable space. σ : a bijection between \mathbf{N}^* and itself. dx: the Lebesgue measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$. $M^1(\Omega, \mathcal{F})$: set of complex measures on (Ω, \mathcal{F}) . ``` |z|: modulus of complex number z. |\mu(E)|: modulus of complex number \mu(E). |\mu|: total variation of complex measure \mu. |\mu|(E): |\mu|-measure of the measurable set E. \mu^+: positive part of signed measure \mu, \mu^+ = (|\mu| + \mu)/2. \mu^-: negative part of signed measure \mu, \mu^- = (|\mu| - \mu)/2. ``` ``` (\Omega, \mathcal{F}): a measurable space. \nu << \mu: the measure \nu is absolutely continuous w.r. to \mu. \limsup_{n\geq 1} E_n: the set \cap_{n\geq 1} \cup_{k\geq n} E_k, also denoted \{E_n: \text{i.o.}\}. M^1(\Omega, \mathcal{F}): set of complex measures on (\Omega, \mathcal{F}). |\nu|: total variation of complex measure \nu. E_n \uparrow E: E_n \subseteq E_{n+1} for all n\geq 1, and E=\cup_{n\geq 1} E_n. u^+: positive part of function u, u^+=u \lor 0=\max(u,0). \mu^+: positive part of signed measure \mu, \mu^+=(|\mu|+\mu)/2. \mathcal{F}_{|A}: trace of \sigma-algebra \mathcal{F} on A, \mathcal{F}_{|A}=\{A\cap E: E\in \mathcal{F}\}. ``` $\mu_{|A}$: restriction of μ to $\mathcal{F}_{|A}$. μ^A : the complex measure $\mu(A \cap \cdot)$ on (Ω, \mathcal{F}) . $|\mu^A|$: total variation of the complex measure μ^A on (Ω, \mathcal{F}) . $|\mu_{|A}|$: total variation of the complex measure $\mu_{|A}$ on $(A, \mathcal{F}_{|A})$. $|\mu|_A$: the measure $|\mu|(A \cap \cdot)$. $|\mu|_A$: restriction of $|\mu|$ to $\mathcal{F}_{|A}$. $f_{|A}$: restriction of the map f to A. $\int f_{|A} d\mu_{|A}$: integral of $f_{|A}$ on the measure space $(A, \mathcal{F}_{|A}, \mu_{|A})$. $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$: product of the σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$. $||\mu||$: total mass of total variation of μ , $||\mu|| = |\mu|(\Omega)$. #### 13. Tutorial 13 \mathbf{K} : the field \mathbf{R} or $\mathbf{C}.$ $S_{\mathbf{K}}(\Omega, \mathcal{F})$: set of **K**-valued complex simple functions on (Ω, \mathcal{F}) . $C^b_{\mathbf{K}}(\Omega)$: set of **K**-valued continuous and bounded maps on Ω . $M^1(\Omega, \mathcal{B}(\Omega))$: set of complex Borel measures on Ω . d(x, A): distance from x to A, $d(x, A) = \inf\{d(x, y) : y \in A\}$. \bar{A} : closure of the set A. $\bar{A}^{\Omega'}$: closure of the set A, relative to the induced topology on Ω' . $B(x,\epsilon)$: open ball with center x and radius ϵ in a metric space. $supp(\phi)$: support of ϕ , closure of $\{\phi \neq 0\}$. $C^c_{\mathbf{K}}(\Omega)$: set of K-valued continuous maps with compact support. # 14. Tutorial 14 |b|: total variation map of $b: \mathbf{R}^+ \to \mathbf{C}$. |b(t)|: modulus of complex number b(t). |b|(t): total variation of b evaluated at $t \in \mathbf{R}^+$. |f(t)|: modulus of complex number f(t). $\mathcal{B}(\mathbf{R}^+)$, $\mathcal{B}(\mathbf{C})$: Borel σ -algebras on \mathbf{R}^+ and \mathbf{C} . ds: Lebesgue measure on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$. $|b|^+$: positive variation of b. $|b|^-$: negative variation of b. db: complex Stieltjes measure associated with b. b^T : stopped map defined by $b^T(t) = b(t \wedge T)$. $C_{\mathbf{c}}^{c}(\mathbf{R}^{+})$: C-valued continuous maps on \mathbf{R}^{+} with compact support. $C^b_{\mathbf{C}}(\mathbf{R}^+)$: C-valued continuous maps on \mathbf{R}^+ which are bounded. b(t-): left-limit of b at t. $\Delta b(t)$: jump of b at $t,\,\Delta b(t)=b(t)-b(t-).$ #### 15. Tutorial 15 ``` d|b|: Stieltjes measure on \mathbf{R}^+ associated with total variation |b|. L^1_{\mathbf{C}}(b): \mathbf{C}-valued, measurable maps f with \int_{\mathbf{R}^+} |f|d|b| < +\infty. L^{1,loc}_{\mathbf{C}}(b): measurable maps with \int_0^t |f|d|b| < +\infty for all t \in \mathbf{R}^+. \int_0^t \dots: partial Lebesgue integral on interval [0,t]. |db|: total variation of complex Stieltjes measure db. t_n \downarrow \downarrow t: t < t_{n+1} \le t_n for all n \ge 1, and t = \inf_{n \ge 1} t_n. da: Stieltjes measure on \mathbf{R}^+ associated with a. f.a: the map defined by (f.a)(t) = \int_0^t f da. d(f.a): Stieltjes measure on \mathbf{R}^+ associated with f.a. a^T: stopped map defined by a^T = a(t \land T). ``` $d(f.a)^T$: Stieltjes measure on \mathbf{R}^+ associated with $(f.a)^T$. $|d(f.a)^T|$: total variation of measure $d(f.a)^T$. $\Delta a(t)$: jump of a at t, $\Delta a(t) = a(t) - a(t-)$. $d|b| \ll da$: d|b| is absolutely continuous w.r. to da. # 16. Tutorial 16 $\mathcal{B}(\Omega)$: Borel σ -algebra on Ω . $L^1_{\mathbf{R}}(\Omega,\mathcal{B}(\Omega),\mu)$: real valued Borel measurable f's with $\int |f| d\mu < +\infty$. $\mathcal{T}_{|A}$: induced topology on A, $\mathcal{T}_{|A} = \{A \cap V : V \in \mathcal{T}\}.$ $\mathcal{T}_{\mathbf{R}}$: usual topology on \mathbf{R} . $|\mu|$: total variation of complex measure μ . $M\mu$: maximal function of complex measure μ . $B(x,\epsilon)$: open ball with center x and radius ϵ . \mathbf{N}_p : the set $\{1,\ldots,p\}$. $\|\mu\|$: total mass of total variation, $\|\mu\| = |\mu|(\mathbf{R}^n)$. Mf: maximal function of f. $dx(B(x,\epsilon))$: Lebesgue measure of open ball $B(x,\epsilon)$ in \mathbb{R}^n . # 17. Tutorial 17 \mathbf{K} : the field \mathbf{R} or \mathbf{C} . $\mathcal{M}_n(\mathbf{K})$: set of $n \times n$ matrices with **K**-valued entries. e_1, \ldots, e_n : canonical basis of \mathbf{K}^n . μ^X , $X(\mu)$: law, distribution of X under μ , image measure of μ by X. $X^{-1}(B), \{X \in B\}$: inverse image of B by X. $Y \circ X$: composition of X and Y, $(Y \circ X)(\omega) = Y(X(\omega))$. τ_a : translation mapping of vector a in \mathbf{R}^n . \uplus : union of pairwise disjoint sets. $\mathcal{B}(\mathbf{R}^n)$: Borel σ -algebra on \mathbf{R}^n . $\sigma(\mathcal{C})$: σ -algebra on \mathbb{R}^n generated by \mathcal{C} . dx: Lebesgue measure on \mathbb{R}^n . $\det \Sigma$: determinant of matrix Σ . $\dim V$: dimension of liear subspace V of \mathbf{R}^n . \mathbf{K} : the field \mathbf{R} or \mathbf{C} . $N, \|\cdot\|$: norm on a **K**-vector space. $E, F : \mathbf{K}$ -normed spaces. $\mathcal{L}_K(E,F)$: set of continuous linear maps $l:E\to F$. $d\phi(a)$: differential of ϕ at a. $d\phi$: differential mapping of ϕ . $\frac{\partial \phi}{\partial x_i}(a)$: *i*-th partial derivative of ϕ at a. $l_{|U}$: restriction of l to U. $J(\phi)(a)$: jacobian of ϕ at a, determinant of $d\phi(a)$. $\mathcal{B}(\mathbf{R}^n)$: Borel σ -algebra on \mathbf{R}^n . $dx_{|\Omega}$: Lebesgue measure on $\Omega \in \mathcal{B}(\mathbf{R}^n)$, restriction of dx to $\mathcal{B}(\Omega)$. $B(a,\epsilon)$: open ball with center a and radius ϵ . $\phi(dx_{|\Omega}): \text{ image measure of } dx_{|\Omega} \text{ by } \phi, \, \phi(dx_{|\Omega})(B) = dx_{|\Omega}(\phi^{-1}(B)).$ $\int |J(\psi)| dx_{|\Omega'}$: measure on Ω' with density $|J(\psi)|$ w.r. to $dx_{|\Omega'}$. $C^{1}(\mathbf{R}, \mathbf{R})$: real, continuously differentiable maps on \mathbf{R} . $\mu_1 \star \ldots \star \mu_p$: the convolution of μ_1, \ldots, μ_p . $\mu \star \nu$: the convolution of μ and ν . $\mu \otimes \nu$: the product measure of μ and ν . B-x: the set $\{y \in \mathbf{R}^n : y+x \in B\}$. δ_a : dirac probability measure on \mathbb{R}^n , centered in $a \in \mathbb{R}^n$. τ_a : translation mapping on \mathbf{R}^n , $\tau_a(x) = a + x$. $\mathcal{B}(\mathbf{R}^n) \otimes \mathcal{B}(\mathbf{R}^n)$: product of Borel σ -algebras on $\mathbf{R}^n \times \mathbf{R}^n$. $\mathcal{F}\mu$: Fourier transform of complex measure μ . $C^b_{\mathbf{R}}(\Omega)$: set of real functions on Ω , which are continuous and bounded. $\mu_k \to \mu$, narrowly: for all $f \in C^b_{\mathbf{R}}(\Omega)$, $\int f d\mu_k \to \int f d\mu$. ϕ_X : characteristic function of \mathbf{R}^n -valued random variable X. $|\alpha|$: for $\alpha \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \ldots + \alpha_n$. x^{α} : for $\alpha \in \mathbf{N}^n$ and $x \in \mathbf{R}^n$, $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$. $\partial^{\alpha} f$: the $|\alpha|$ -th order partial derivative of f, $\partial^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} ... \partial x_{n}^{\alpha_{n}}}$. $x^{\alpha}\mu: x^{\alpha}\mu = \int x^{\alpha}d\mu$, measure with density x^{α} w.r. to μ . $\mathcal{M}_n(\mathbf{R})$: set of $n \times n$ matrices with real entries. M^t : transposed matrix of M. M^{-1} : inverse matrix of non-singular matrix M. $\langle u, Mu \rangle$: inner-product in \mathbf{R}^n of u and Mu. Σ : a symmetric and non-negative $n\times n$ real matrix. $\phi(\mu)$: image measure of μ by ϕ , $\phi(\mu)(B) = \mu(\phi^{-1}(B))$. $\mathcal{F}P(u)$: Fourier transform of probability P, evaluated at u. $N_n(m,\Sigma)$: Gaussian measure on \mathbb{R}^n with mean m and covariance Σ . $N_1(0,1)$: reduced Gaussian measure on **R**. x^{α} : for $\alpha \in \mathbf{N}^n$ and $x \in \mathbf{R}^n$, $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$. cov(X,Y) : covariance between square-integrable variables X and Y. var(X): variance of square-integrable random variable X. δ_0, δ_1 : dirac probability measures on **R**, centered in 0 and 1. $\det \Sigma$: determinant of matrix Σ . dx: Lebesgue measure on \mathbb{R}^n .