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Probability Tutorials: Notations

1. Tutorial 1

é: equality which is true by definition, hence always true.
Q) : an arbitrary set.

P(Q) : the power set of £, i.e. the set of all subsets of .
D : a set of subsets of €2, also a Dynkin system on 2.

F . aset of subsets of (2, also a og-algebra on ).

Q €D : Qis an element of the set D.

A, B : arbitrary subsets of Q.

(An)n>1 : a sequence of subsets of .

AC B: Aisasubset of B,i.e. x € A= x € B.

B\ A : set difference defined by B\ A={x € B:xz ¢ A}.
U2 A, ¢ union of all A,’s, U A, = {z:3n> 1,2 € A,}.
A€ : the complement of Ain Q, A={xeQ:x¢gA}.
AUDB : union of A and B, AUB={x:2 € Aorx€ B}
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AN B : intersection of A and B, ANB ={xz:x € Aand z € B}.
(Di)ier : a family of Dynkin systems on €, indexed by a set I.
NicrD; : intersection of all D;’s, N;erD; = {A:Vie I, A€ D;}.
(Fi)ier ¢ a family of o-algebras on €, indexed by a set I.

NierFi : intersection of all F;’s, Nie; Fy = {A:Vie I, A € F;}.
A : a set of subsets of 2, a subset of P().

D(A) : the set of all Dynkin systems on €, containing A.

D(A) : the Dynkin system on €, generated by A.

o(A) : the o-algebra on 2, generated by A.

C : a set of subsets of 2, also a m-system on 2.

2. Tutorial 2

Q) : an arbitrary set.

P(€2) : the power set of €, i.e. the set of all subsets of 2.
() : the empty set, i.e. the only set with no elements.

B\ A : set difference defined by B\ A={x € B:x ¢ A}.
W : union of pairwise disjoint sets.
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R : a set of subsets of 2, also a ring on 2.

(Ri)ier : a family of rings on ), indexed by a set I.

A @ a set of subsets of €2, a subset of P(£2).

R(A) : the set of all rings on 2, containing A.

R(A) : the ring on €, generated by A.

1 : a measure defined on a set of subsets of (2.

[0, +00] : the set R U {400}.

R(S) : the ring on Q, generated by the semi-ring S.

i, i+ measures defined on the ring R(S).

s ﬂfs : the restrictions of i and i’ to the smaller domain S.
1* 1 an outer-measure on .

S(u*),> : the o-algebra on Q, associated with p*.

A, B, T : arbitrary subsets of ().

A° : the complement of Ain Q, A°={zx € Q:z & A}.

MI*E : the restriction of p* to the smaller domain X.

o(R), 0(R(S)), o(S) : o-algebras on €, generated by R, R(S), S.
i+ a measure defined on o(R), or o(S).

,uiR, ,ui s : the restrictions of ;i to the smaller domains R and S.
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3. Tutorial 3

() : an arbitrary set.

P(Q) : the power set of £, i.e. the set of all subsets of .

A : a set of subsets of .

1 : a finitely additive map on 4 or a measure on F.

W : a union of pairwise disjoint sets.

A, A;, A, : arbitrary substets of .

a Vb : the largest of @ and b, a V b = max(a, b).

a A'b: the smallest of a and b, a A b = min(a,b).

S : the semi-ring § = {]a,b], a,b € R}, or a semi-ring on .
R(S) : the ring generated by S.

i : a finitely additive map defined on R(S).

F: a right-continuous and non-decreasing map defined on R or R™.
T : a topology on €.

(©,7) : a topological space.

B(Q) : the Borel o-algebra on (2, 7).

R : the real line R =] — 0o, +00[.
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R™ : the subset of R, RT = [0, +00].

Tr : the usual topology on R.

B(R) : the Borel o-algebra on R.

B(R™) : the Borel o-algebra on R¥.

Q : the set of all rational numbers.

o(8S) : the o-algebra generated by S.

F : a o-algebra on (.

(©, F) : a measurable space.

(Q, F, 1) : a measure space.

A, TA:foralln>1, A4, CA,41 and A = Uj;i'jAn.
A, | A:foralln>1, A1 C A, and A = ﬂfliﬁAn.
D,, = a Dynkin system on R or RT.

1, pi2 : measures defined on B(R) or B(R™).

dF : the Stieltjes measure on B(R) or B(R™) associated with F.
dx : the Lebesgue measure on B(R).

F(xzo—) : the left limit of F' at x = xy.

Q) : a subset of .

Ao : the trace of Aon @, Ao ={ANQ : Ae A}
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7\ : the toplogy on €Y', induced by the topology 7T on €.
o(A) : the o-algebra on ) generated by A.

o(Ajy) : the o-algebra on Q' generated by Ajq.

o(A)jo : the trace of o(A) on Q.

B(2)| : the trace of B(€2) on .

B(Y') : the Borel o-algebra on (', 7).

Flov : the trace of F on €.

[y ¢ the restriction of 1 to Fo/, when Q' € F.

4. Tutorial 4

f:A— B: amap defined on A with values in B.

F(A") : direct image of A" by f, f(A) ={f(z):x € A’}

f71(B’) : inverse image of B’ by f, f~Y(B')={z € A: f(z) € B'}.
{f € B’} : same as f~1(B').

(Q,7), (S,7s) : topological spaces.

(E.d), (F,d) : metric spaces.

B(z,€) : the open ball on E, B(z,e) ={y € E : d(z,y) < €}.
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T2 : the metric topology on E, associated with the metric d.

d|p @ restriction of the metric d to F' x F, when F' C E.

Tr, (’Tbﬂl)w : the topology on F, induced by the metric topology 7.
T4, Tﬁ‘p : the metric topology on F, associated with the metric d|p.
R : the extended real line, R = R U {—0c0, +00} = [—00. + 0.

T : the usual topology on R.

R : the usual topology on R.

N

(7Tg)|r : the topology on R, induced by the usual topology on R.
B(R) : the Borel o-algebra on R.
B(R) : the Borel o-algebra on R.
B(R)R : the trace of B(R) on R.

T—d the metric topology on R associated with the metric d.
(«,

F), (S,%), (S1,21) : measurable spaces.
E’, Ygs + the trace of ¥ on S”.
go f: the composition of g and f, defined by go f(z) = g(f(x)).
A : a set of subsets of S.
o(A) : the o-algebra on S generated by A.
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C1, Cy, C3, Cy : set of subsets of R.

{f < ¢} : the inverse image of [—o0, ] by f

{f < ¢} : the inverse image of [—o0, ¢[ by f.

{c¢ < f} : the inverse image of [c, +oo} by f

{c < [} : the inverse image of |¢, +o00] by f.

inf,,>1 v, : the greatest lower-bound of {v,, : n > 1}.

Sup,,~1 Un : the smallest upper-bound of {v, : n > 1}.

liminf v, : the lower limit of (v,),>1 as n — +oc.

limsup vy, : the upper limit of (vy,),>1 as n — 4o0.

lim v, : the limit of (vy,)n>1 as n — +o0.

ST ¢ the positive part of f, f* = max(f,0).

f7 : the negative part of f, f~ = max(—f,0).

A : the closure of A in (€, 7).

d(xz, A) : the distance from z to A, d(x, A) = inf{d(x,y) : y € A}.
lim f,, : simple limit of (f,)n>1, defined by (lim f,,)(w) = lim f, (w).
C : the set of complex numbers.

Re(f) : the real part of f.

Im(f) : the imaginary part of f.
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5. Tutorial 5

(Q, F, ) : an arbitrary measure space.

14 : the characteristic function of A C €.

W : a union of pairwise disjoint sets.

I*(s) : the integral w.r. to p of the simple function s on (€2, F).

| fdp : the Lebesgue integral of f with respect to p.

vp To: foralln>1, v, <v,y and v = sup,,~ Un.

fol fiforallwe Q, fr(w) T flw). -

A, TA:foralln>1, A, CA,+1 and A= Uj;i'jAn.

P(w), p-a.s. : the property P holds p-almost surely.

F|a : the trace of Fon ACQ.

{4 : the restriction of p to F|4, when A € F.

f1a : the restriction of f to A.

p” : the measure defined on F by p(E) = u(AN E).

[, fdp : the partial Lebesgue integral of f over A with respect to p.
Li(Q, F,p) : set of R-valued, measurable maps with [ |f|dp < 4oc.
L&(2, F, ) ¢ set of C-valued, measurable maps with [ |f|du < +oc.
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6. Tutorial 6

I : an arbitrary non-empty set.

(Q)ier ¢ a familiy of sets indexed by 1.

[I;c; € : the cartesian product of the family (€2;)ier.

Q! : the cartesian product when Q; = Q, for all i € I.
:ic] 2, : the cartesian product when I = N*.

0y x ... xQ, : the cartesian product when I = N,,.

N : the set N ={0,1,2,...}.

N* : the set N* = {1,2,3,...}.

N,, : the set N, = {1,2,...,n}.

(Ix)xena : a partition of the set I.

(&)ier ¢ a family, where each &; is a set of subsets of ;.

[I,c; Ai : arectangle of the family (&;)icr.

[T;c; &« the set of all rectangles of the family (£;)ier.

EIT... 1IE&, : the set of all rectangles when I = IN,,.

(2, Fi)ier : a family of measurable spaces indexed by 1.

[1,c; Fi : the set of measurable rectangles, the rectangles of (F;)icr.
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®;e1F; + the product o-algebra of (F;)ier on ;e
o([L;e; Fi) : the o-algebra generated by the measurable rectangles.
F1® ... F, : the product o-algebra when I = N,,.

o(&;) : the o-algebra on €;, generated by &;.

®ier0(&;) + the product o-algebra of (o(&;))ier on ;e
[T;c; (&) : the set of measurable rectangles of (0(&;))ier-
Tr : the usual toplogy on R.

Tr 1I... 11 7R : set of rectangles when I = N,, and &; = TRr.
A 1 a set of subsets of (2.

7T (A) : the topology on €, generated by A.

(€24, 7;)ier : a family of topological spaces indexed by I.
[1,c; 7: : the set of rectangles of (7;)ic;s.

®ie17T; : the product topology of (7;);er on ;e ;.

B(§2;) : the Borel o-algebra on (€;,7;).

®;e1B(82;) : product o-algebra of (B(2;))ier on ;e ;.

‘H : a countable base of (Q,7).

B(IL;c;€2;) : the Borel o-algebra for the product topology.
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7. Tutorial 7

E“1 : wi-section of a subset E of 21 x Qs.

F1 1L Fs @ set of measurable rectangles of F; and Fo.
F1 ® Fo @ product o-algebra of F; and Fo.

B(E) : Borel o-algebra on a metric space (E, d).
Q,17Q:foralln>1,9, C Q1 and Q= U+°°Q .
P& ® Uy, product of o-finite measures.

dz™ : the Lebesgue measure on (R™, B(R™)).

N,, : the set {1,...,n}.

o : a permutation, i.e. a bijection ¢ : N,, — N,,.
il f Forall p> 1, f, < fp41 and f = lim f,.
Jo, f(w,2)dps(z) : the integral of f(w,e) w.r. to iz, w € Q1.

8. Tutorial 8

limg| 1z, @(z) : the limit of ¢p(x) as x — xg with zo < x.
7|k : the induced topology on K.
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0(A) : the diameter of a set A.

infyeq f(z) : the infimum of f(Q).

SUp,eq f(z) : the supremum of f(€2).

f'(c) : the derivative of f evaluated at c.

f%)(a) : the k™ derivative of f evaluated at a.

C™: [of class] for all k < n, f*) exists and is continuous.
(Q, F, P) : a probability space.

(S,%) : a measurable space.

E[X] : the expectation of the random variable X.

¢ o X : the composition ¢ o X (w) = ¢(X(w)).

9. Tutorial 9

(Q, F, 1) : a measure space.

L% (9, F. p) : set of R-valued measurable maps f, with || f]|, < +oc.
LE(Q, F, i) : set of C-valued measurable maps f, with || f||, < +o0.
|l : pnorm of f. For p € [1,+o0cl, |fl, = ([ |fPdu)'/7.

| flloo : co-norm of f. || fllec = inf{M € RT : |f| < M, p-a.s.}.
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B(f,€) : the open ball in L (2, F, p) or LL(Q, F, ).

Tn LR (xn)n>1 converges to x, with respect to the topology 7.
In 2 f 1 (fn)n>1 converges to f in LP. || f, — f|l, — 0.

fn— [+ (fn)n>1 converges to f, simply: f,(z) — f(z) for all z.
fn— [, pras. : fu(x) — f(x) for p-almost all x.

(fny)k>1 © a sub-sequence of (f,)n>1.

10. Tutorial 10

K : the field R or C.

N* : the set of positive integers, N* = {1,2,3,...}.
Trn : usual topology on R™.

Tx : usual topology on R.

Tn LR convergence with respect to a topology 7.
dcn @ usual metric on C™.

dgr~ : usual metric on R"™.
0(A) : diameter of A, §(A) = sup{d(x,y) : z,y € A}.
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F : closure of the set F.

Z : complex conjugate of z. If z =a +ib, Z = a — ib.

(+,+) : an inner-product on a K-vector space.

Il - || : the norm induced by an inner product, || - || = +/{-, ).
7.,y : norm topology induced by an inner-product.

Gt orthogonal of a set G w.r. to some inner-product.

[f] : p-almost sure equivalence class of f in L (Q,F, u).
11. Tutorial 11

N* : the set of positive integers N* = {1,2,3,...}.

Z : the set of integers Z ={...,—2,-1,0,1,2,...}.

(©, F) : a measurable space.

g .

a bijection between N* and itself.

W,>1 : a countable union of pairwise disjoint sets.

dx
M1

: the Lebesgue measure on (R", B(R"™)).

(Q,F) : set of complex measures on (£, F).
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|z| : modulus of complex number z.

|1(E)| : modulus of complex number p(E).

|| = total variation of complex measure p.

|1|(E) : |p|-measure of the measurable set E.

u" o positive part of signed measure u, ut = (|u| + p)/2.
1~ : negative part of signed measure p, p= = (|p| — p)/2.

12. Tutorial 12

(©, F) : a measurable space.
v << i : the measure v is absolutely continuous w.r. to pu.
limsup,,~; E, : the set Np>1 Ug>n Eg, also denoted {E,, : i.0.}.
MY, F) : set of complex measures on (€2, F).
|v| : total variation of complex measure v.
E,TE: E,CE,;foralln>1,and £ =U,>1E),.
T ¢ positive part of function u, vt = vV 0 = max(u, 0).
pT : positive part of signed measure p, T = (|p| + p1)/2.
Fa : trace of g-algebra F on A, Fil4, ={ANE: Ec F}.
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= restriction of u to F4.

p ¢ the complex measure (AN -) on (2, F).

|1 : total variation of the complex measure p? on (Q, F).
|4l : total variation of the complex measure ji4 on (A, F|4).
||+ the measure |p|(AN ).

1]+ restriction of |u| to F|a.

f1a : restriction of the map f to A.

J fiadp 4 - integral of f4 on the measure space (A, F|a, fia)-
F1® ... F, : product of the o-algebras Fi,...,F,.

|||l = total mass of total variation of u, ||| = |u|(9).

13. Tutorial 13

K : the field R or C.

Sk (€, F) : set of K-valued complex simple functions on (€2, F).
CE(9) : set of K-valued continuous and bounded maps on .
M*1(Q,B(2)) : set of complex Borel measures on €.

d(xz, A) : distance from z to A, d(x, A) = inf{d(x,y) : y € A}.
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f:l : closure of the set A.
A%+ closure of the set A, relative to the induced topology on €V'.
B(z,€) : open ball with center x and radius € in a metric space.

supp(¢) : support of ¢, closure of {¢ # 0}.
C () : set of K-valued continuous maps with compact support.

14. Tutorial 14

|b| : total variation map of b: RT — C.

[b(t)| : modulus of complex number b(t).

|b|(t) : total variation of b evaluated at t € R™.
[ ()] : modulus of complex number f(t).
B(R™), B(C) : Borel g-algebras on R and C.
ds : Lebesgue measure on (R*, B(R™)).

|b|™ : positive variation of b.

[b|~ : negative variation of b.

db : complex Stieltjes measure associated with b.
b" . stopped map defined by b7 (t) = b(t A T).
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C&(R™) : C-valued continuous maps on Rt with compact support.
C%(R™) : C-valued continuous maps on R* which are bounded.
b(t—) : left-limit of b at ¢.

AD(t) : jump of b at t, Ab(t) = b(t) — b(t—).

15. Tutorial 15

d|b| : Stieltjes measure on R associated with total variation |b].
Lg(b) = C-valued, measurable maps f with [, [ f]d[b] < +oc.
Lg'°(b) - measurable maps with fot |f]d|b] < 400 for all t € RT.
f(f ... : partial Lebesgue integral on interval [0, ¢].
|db] : total variation of complex Stieltjes measure db.
fn Lttt <tppr <ty foralln>1,and t =inf, > t,.
: Stieltjes measure on R™ absoc1ated with a.

f.a : the map defined by (f.a) fo fda.
d(f.a) : Stieltjes measure on R+ associated with f.a.

T stopped map defined by a” = a(t A T).
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d(f.a)” : Stieltjes measure on R associated with (f.a)?.
|d(f.a)T| : total variation of measure d(f.a)T.

Aa(t) : jump of a at t, Aa(t) = a(t) — a(t—).

d|b| << da : d|b| is absolutely continuous w.r. to da.

16. Tutorial 16

B(Q) : Borel o-algebra on €.

L (2, B(Q), 1) : real valued Borel measurable f’s with [|f|du <
+o0.

74 : induced topology on A, 7|4 = {ANV :V €T}
Tr : usual topology on R.

|| : total variation of complex measure p.

My : maximal function of complex measure p.
B(x,¢) : open ball with center x and radius e.

N, : the set {1,...,p}.

llie]| = total mass of total variation, ||u|| = |u|(R™).
M f : maximal function of f.
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dx(B(x,¢)) : Lebesgue measure of open ball B(xz,¢) in R™.

17. Tutorial 17

K : the field R or C.

M, (K) : set of n X n matrices with K-valued entries.
€1,...,6, : canonical basis of K.

X, X () : law, distribution of X under u, image measure of y by X.
X~1(B), {X € B} : inverse image of B by X.

Y o X : composition of X and Y, (Y o X)(w) = V(X (w)).
7, : translation mapping of vector a in R"”.

W : union of pairwise disjoint sets.

B(R™) : Borel g-algebra on R".

o(C) : o-algebra on R™ generated by C.

dx : Lebesgue measure on R"™.

det ¥ : determinant of matrix 3.

dim V' : dimension of liear subspace V' of R".

www.probability.net


http://www.probability.net

Tutorial 18: Tutorial 18 22

18. Tutorial 18

K : the field R or C.

N, || ]|: norm on a K-vector space.

FE, F : K-normed spaces.

Lk (E,F) : set of continuous linear maps [ : E — F.

do(a) : differential of ¢ at a.

d¢ - differential mapping of ¢.

0‘1’ -(a) : i-th partial derivative of ¢ at a.

I‘U : restriction of [ to U.

J(¢)(a) : jacobian of ¢ at a, determinant of d¢(a).

B(R™) : Borel o-algebra on R™.

dz| : Lebesgue measure on Q € B(R"), restriction of dx to B(2).
B(a,€) : open ball with center a and radius e.

qb(drm) : image measure of dz| by @, ¢(dxq)(B) = drjo(¢~ 1 (B)).
[ J(¥)|dz | - measure on ' with density [J(¢)] w.r. to da|q .
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19. Tutorial 19

C'(R,R) : real, continuously differentiable maps on R.
fi1 % ... % i, : the convolution of p1,. .., .
v : the convolution of 1 and v.
1 ® v the product measure of p and v.
B —x: theset {y e R":y+ 2z € B}.
04 : dirac probability measure on R, centered in a € R".
7o : translation mapping on R", 7,(z) = a + x.
B(R™) @ B(R™) : product of Borel o-algebras on R™ x R".
Fu : Fourier transform of complex measure p.
C& () : set of real functions on €2, Which are continuous and bounded.
[ — [, narrowly : for all f € C'b ), | fdpr — [ fdp.
¢x : characteristic function of R” Valued random variable X.
laf @ for a € N™, o] = a1 + ... + .
“:fora € N"and z € R", 2% = 2{" ... 20",

. o lo]
0%f : the |a|-th order partial derivative of f, 9%f = 7(%;? gx‘*n .
T dan

% 2®pu = [ z*dp, measure with density x* w.r. to pu.
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20. Tutorial 20

M, (R) : set of n X n matrices with real entries.

M? : transposed matrix of M.

M~ : inverse matrix of non-singular matrix M.

(u, Mu) : inner-product in R™ of u and Mu.

> @ a symmetric and non-negative n x n real matrix.

¢(p) : image measure of p by ¢, ¢(u)(B) = u(¢~"(B)).

FP(u) : Fourier transform of probability P, evaluated at .

N, (m,X) : Gaussian measure on R” with mean m and covariance X.
N1(0,1) : reduced Gaussian measure on R.

z®: for « € N" and € R", 2% = 27" ... 20",

cov(X,Y") : covariance between square-integrable variables X and Y.
var(X) : variance of square-integrable random variable X.

0o, 01 : dirac probability measures on R, centered in 0 and 1.

det > : determinant of matrix X.

dx : Lebesgue measure on R"™.
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