Probability Tutorials: Notations

1. Tutorial 1

 $\stackrel{\triangle}{=}$: equality which is true by definition, hence always true.

 Ω : an arbitrary set.

 $\mathcal{P}(\Omega)$: the power set of Ω , i.e. the set of all subsets of Ω .

 \mathcal{D} : a set of subsets of Ω , also a Dynkin system on Ω .

 \mathcal{F} : a set of subsets of Ω , also a σ -algebra on Ω .

 $\Omega \in \mathcal{D}$: Ω is an element of the set \mathcal{D} .

A, B: arbitrary subsets of Ω .

 $(A_n)_{n\geq 1}$: a sequence of subsets of Ω .

 $A \subseteq \overline{B}$: A is a subset of B, i.e. $x \in A \Rightarrow x \in B$.

 $B \setminus A$: set difference defined by $B \setminus A = \{x \in B : x \notin A\}$.

 $\bigcup_{n=1}^{+\infty} A_n : \text{ union of all } A_n \text{'s}, \bigcup_{n=1}^{+\infty} A_n = \{x : \exists n \ge 1, x \in A_n\}.$

 A^c : the complement of A in Ω , $A^c = \{x \in \Omega : x \notin A\}$.

 $A \cup B$: union of A and B, $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

 $A \cap B$: intersection of A and B, $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

 $(\mathcal{D}_i)_{i\in I}$: a family of Dynkin systems on Ω , indexed by a set I.

 $\bigcap_{i \in I} \mathcal{D}_i : \text{ intersection of all } \mathcal{D}_i \text{'s}, \, \bigcap_{i \in I} \mathcal{D}_i = \{A : \forall i \in I, A \in \mathcal{D}_i\}.$

 $(\mathcal{F}_i)_{i\in I}$: a family of σ -algebras on Ω , indexed by a set I.

 $\cap_{i\in I}\mathcal{F}_i: \text{ intersection of all } \mathcal{F}_i\text{'s}, \cap_{i\in I}\mathcal{F}_i=\{A: \forall i\in I, A\in\mathcal{F}_i\}.$

 \mathcal{A} : a set of subsets of Ω , a subset of $\mathcal{P}(\Omega)$.

D(A): the set of all Dynkin systems on Ω , containing A.

 $\mathcal{D}(\mathcal{A})$: the Dynkin system on Ω , generated by \mathcal{A} .

 $\sigma(\mathcal{A})$: the $\sigma\text{-algebra}$ on $\Omega,$ generated by $\mathcal{A}.$

 \mathcal{C} : a set of subsets of Ω , also a π -system on Ω .

2. Tutorial 2

 Ω : an arbitrary set.

 $\mathcal{P}(\Omega)$: the power set of Ω , i.e. the set of all subsets of Ω .

 \emptyset : the empty set, i.e. the only set with no elements.

 $B \setminus A$: set difference defined by $B \setminus A = \{x \in B : x \notin A\}$.

 $\ensuremath{\,\,\sqcup\,\,}$: union of pairwise disjoint sets.

 \mathcal{R} : a set of subsets of Ω , also a ring on Ω .

 $(\mathcal{R}_i)_{i\in I}$: a family of rings on Ω , indexed by a set I.

 \mathcal{A} : a set of subsets of Ω , a subset of $\mathcal{P}(\Omega)$.

 $R(\mathcal{A})$: the set of all rings on Ω , containing \mathcal{A} .

 $\mathcal{R}(\mathcal{A})$: the ring on Ω , generated by \mathcal{A} .

 μ : a measure defined on a set of subsets of Ω .

 $[0, +\infty]$: the set $\mathbf{R}^+ \cup \{+\infty\}$.

 $\mathcal{R}(\mathcal{S})$: the ring on Ω , generated by the semi-ring \mathcal{S} .

 $\bar{\mu}, \bar{\mu}'$: measures defined on the ring $\mathcal{R}(\mathcal{S})$.

 $\bar{\mu}_{|\mathcal{S}}, \bar{\mu}'_{|\mathcal{S}}$: the restrictions of $\bar{\mu}$ and $\bar{\mu}'$ to the smaller domain \mathcal{S} .

 μ^* : an outer-measure on Ω .

 $\Sigma(\mu^*), \Sigma$: the σ -algebra on Ω , associated with μ^* .

A, B, T: arbitrary subsets of Ω .

 A^c : the complement of A in Ω , $A^c = \{x \in \Omega : x \notin A\}$.

 $\mu_{|\Sigma}^*$: the restriction of μ^* to the smaller domain Σ .

 $\sigma(\mathcal{R}), \ \sigma(\mathcal{R}(\mathcal{S})), \ \sigma(\mathcal{S}) : \sigma$ -algebras on Ω , generated by $\mathcal{R}, \ \mathcal{R}(\mathcal{S}), \ \mathcal{S}$.

 μ' : a measure defined on $\sigma(\mathcal{R})$, or $\sigma(\mathcal{S})$.

 $\mu'_{|\mathcal{R}}, \mu'_{|\mathcal{S}}$: the restrictions of μ' to the smaller domains \mathcal{R} and \mathcal{S} .

 Ω : an arbitrary set.

 $\mathcal{P}(\Omega)$: the power set of Ω , i.e. the set of all subsets of Ω .

 \mathcal{A} : a set of subsets of Ω .

 μ : a finitely additive map on \mathcal{A} or a measure on \mathcal{F} .

 \uplus : a union of pairwise disjoint sets.

 A, A_i, A_n : arbitrary substets of Ω .

 $a \lor b$: the largest of a and b, $a \lor b = \max(a, b)$.

 $a \wedge b$: the smallest of a and b, $a \wedge b = \min(a, b)$.

S: the semi-ring $S = \{ [a, b], a, b \in \mathbb{R} \}$, or a semi-ring on Ω .

 $\mathcal{R}(\mathcal{S})$: the ring generated by \mathcal{S} .

 $\bar{\mu}$: a finitely additive map defined on $\mathcal{R}(\mathcal{S})$.

F: a right-continuous and non-decreasing map defined on \mathbf{R} or \mathbf{R}^+ .

 \mathcal{T} : a topology on Ω .

 (Ω, \mathcal{T}) : a topological space.

 $\mathcal{B}(\Omega)$: the Borel σ -algebra on (Ω, \mathcal{T}) .

 \mathbf{R} : the real line $\mathbf{R} =]-\infty, +\infty[$.

 \mathbf{R}^+ : the subset of \mathbf{R} , $\mathbf{R}^+ = [0, +\infty[$.

 $\mathcal{T}_{\mathbf{R}}$: the usual topology on $\mathbf{R}.$

 $\mathcal{B}(\mathbf{R})$: the Borel σ -algebra on \mathbf{R} .

 $\mathcal{B}(\mathbf{R}^+)$: the Borel σ -algebra on \mathbf{R}^+ .

 \mathbf{Q} : the set of all rational numbers.

 $\sigma(\mathcal{S})$: the σ -algebra generated by \mathcal{S} .

 \mathcal{F} : a σ -algebra on Ω .

 (Ω, \mathcal{F}) : a measurable space.

 $(\Omega, \mathcal{F}, \mu)$: a measure space.

 $A_n \uparrow A$: for all $n \ge 1$, $A_n \subseteq A_{n+1}$ and $A = \bigcup_{n=1}^{+\infty} A_n$.

 $A_n \downarrow A$: for all $n \geq 1$, $A_{n+1} \subseteq A_n$ and $A = \bigcap_{n=1}^{+\infty} A_n$.

 \mathcal{D}_n : a Dynkin system on **R** or **R**⁺.

 $\mu_1, \, \mu_2$: measures defined on $\mathcal{B}(\mathbf{R})$ or $\mathcal{B}(\mathbf{R}^+)$.

dF: the Stieltjes measure on $\mathcal{B}(\mathbf{R})$ or $\mathcal{B}(\mathbf{R}^+)$ associated with F.

dx: the Lebesgue measure on $\mathcal{B}(\mathbf{R})$.

 $F(x_0-)$: the left limit of F at $x=x_0$.

 Ω' : a subset of Ω .

 $\mathcal{A}_{|\Omega'}$: the trace of \mathcal{A} on Ω' , $\mathcal{A}_{|\Omega'} = \{A \cap \Omega' : A \in \mathcal{A}\}.$

Tutorial 4: Tutorial 4

 $\mathcal{T}_{|\Omega'|}$: the topology on Ω' , induced by the topology \mathcal{T} on Ω .

 $\sigma(\mathcal{A})$: the σ -algebra on Ω generated by \mathcal{A} .

 $\sigma(\mathcal{A}_{|\Omega'})$: the σ -algebra on Ω' generated by $\mathcal{A}_{|\Omega'}$.

 $\sigma(\mathcal{A})_{|\Omega'}$: the trace of $\sigma(\mathcal{A})$ on Ω' .

 $\mathcal{B}(\Omega)_{|\Omega'|}$: the trace of $\mathcal{B}(\Omega)$ on Ω' .

 $\mathcal{B}(\Omega')$: the Borel σ -algebra on $(\Omega', \mathcal{T}_{|\Omega'})$.

 $\mathcal{F}_{|\Omega'}$: the trace of \mathcal{F} on Ω' .

 $\mu_{|\Omega'}$: the restriction of μ to $\mathcal{F}_{|\Omega'}$, when $\Omega' \in \mathcal{F}$.

4. Tutorial 4

 $f: A \to B$: a map defined on A with values in B.

f(A'): direct image of A' by f, $f(A') = \{f(x) : x \in A'\}$.

 $f^{-1}(B')$: inverse image of B' by $f, f^{-1}(B') = \{x \in A : f(x) \in B'\}$.

 $\{f \in B'\}$: same as $f^{-1}(B')$.

 $(\Omega, \mathcal{T}), (S, \mathcal{T}_S)$: topological spaces.

 $(E,d), (F,\delta)$: metric spaces.

 $B(x,\epsilon)$: the open ball on $E,\,B(x,\epsilon)=\{y\in E:d(x,y)<\epsilon\}.$

 \mathcal{T}_E^d : the metric topology on E, associated with the metric d.

 $d_{|F|}$: restriction of the metric d to $F \times F$, when $F \subseteq E$.

 \mathcal{T}_F , $(\mathcal{T}_E^d)_{|F|}$: the topology on F, induced by the metric topology \mathcal{T}_E^d .

 $\mathcal{I}_F',\,\mathcal{I}_F^{d_{|F}}$: the metric topology on F, associated with the metric $d_{|F}.$

 $\bar{\mathbf{R}}$: the extended real line, $\bar{\mathbf{R}} = \mathbf{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$.

 $\mathcal{T}_{\bar{\mathbf{R}}}$: the usual topology on $\bar{\mathbf{R}}.$

 $\mathcal{T}_{\mathbf{R}}$: the usual topology on \mathbf{R} .

 $(\mathcal{T}_{\bar{\mathbf{R}}})_{|\mathbf{R}}$: the topology on \mathbf{R} , induced by the usual topology on $\bar{\mathbf{R}}$.

 $\mathcal{B}(\mathbf{R})$: the Borel σ -algebra on \mathbf{R} .

 $\mathcal{B}(\mathbf{R})$: the Borel σ -algebra on \mathbf{R} .

 $\mathcal{B}(\bar{\mathbf{R}})_{|\mathbf{R}}$: the trace of $\mathcal{B}(\bar{\mathbf{R}})$ on \mathbf{R} .

 $\mathcal{T}^d_{\bar{\mathbf{R}}}$: the metric topology on $\bar{\mathbf{R}}$ associated with the metric d.

 $(\widetilde{\Omega}, \mathcal{F}), (S, \Sigma), (S_1, \Sigma_1)$: measurable spaces.

 Σ' , $\Sigma_{|S'}$: the trace of Σ on S'.

 $g \circ f$: the composition of g and f, defined by $g \circ f(x) = g(f(x))$.

A: a set of subsets of S.

 $\sigma(\mathcal{A})$: the σ -algebra on S generated by \mathcal{A} .

```
C_1, C_2, C_3, C_4: set of subsets of \bar{\mathbf{R}}.
\{f < c\}: the inverse image of [-\infty, c] by f.
\{f < c\}: the inverse image of [-\infty, c] by f.
\{c \leq f\}: the inverse image of [c, +\infty] by f.
\{c < f\}: the inverse image of [c, +\infty] by f.
\inf_{n\geq 1} v_n: the greatest lower-bound of \{v_n: n\geq 1\}.
\sup_{n>1} v_n: the smallest upper-bound of \{v_n : n \geq 1\}.
\liminf v_n: the lower limit of (v_n)_{n\geq 1} as n\to +\infty.
\limsup v_n: the upper limit of (v_n)_{n\geq 1} as n\to +\infty.
\lim v_n: the limit of (v_n)_{n\geq 1} as n\to +\infty.
f^+: the positive part of f, f^+ = \max(f, 0).
f^-: the negative part of f, f^- = \max(-f, 0).
\bar{A}: the closure of A in (\Omega, \mathcal{T}).
d(x, A): the distance from x to A, d(x, A) = \inf\{d(x, y) : y \in A\}.
\lim f_n: simple limit of (f_n)_{n>1}, defined by (\lim f_n)(\omega) = \lim f_n(\omega).
C: the set of complex numbers.
Re(f): the real part of f.
Im(f): the imaginary part of f.
```

```
(\Omega, \mathcal{F}, \mu): an arbitrary measure space.
1_A: the characteristic function of A \subseteq \Omega.
\forall: a union of pairwise disjoint sets.
I^{\mu}(s): the integral w.r. to \mu of the simple function s on (\Omega, \mathcal{F}).
\int f d\mu: the Lebesgue integral of f with respect to \mu.
v_n \uparrow v: for all n \ge 1, v_n \le v_{n+1} and v = \sup_{n \ge 1} v_n.
f_n \uparrow f: for all \omega \in \Omega, f_n(\omega) \uparrow f(\omega).
A_n \uparrow A: for all n \geq 1, A_n \subseteq A_{n+1} and A = \bigcup_{n=1}^{+\infty} A_n.
\mathcal{P}(\omega), \mu-a.s.: the property \mathcal{P} holds \mu-almost surely.
\mathcal{F}_{|A}: the trace of \mathcal{F} on A \subseteq \Omega.
\mu_{|A}: the restriction of \mu to \mathcal{F}_{|A}, when A \in \mathcal{F}.
f_{|A}: the restriction of f to A.
\mu^A: the measure defined on \mathcal{F} by \mu^A(E) = \mu(A \cap E).
\int_A f d\mu: the partial Lebesgue integral of f over A with respect to \mu.
L^1_{\mathbf{R}}(\Omega, \mathcal{F}, \mu): set of R-valued, measurable maps with \int |f| d\mu < +\infty.
L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu): set of C-valued, measurable maps with \int |f| d\mu < +\infty.
```

```
I: an arbitrary non-empty set.
(\Omega_i)_{i\in I}: a family of sets indexed by I.
\prod_{i\in I}\Omega_i: the cartesian product of the family (\Omega_i)_{i\in I}.
\Omega^{I}: the cartesian product when \Omega_{i} = \Omega, for all i \in I.
\prod_{n=1}^{+\infty} \Omega_n: the cartesian product when I = \mathbf{N}^*.
\Omega_1 \times \ldots \times \Omega_n: the cartesian product when I = \mathbf{N}_n.
N: the set N = \{0, 1, 2, \ldots\}.
N^*: the set N^* = \{1, 2, 3, \ldots\}.
N_n: the set N_n = \{1, 2, ..., n\}.
(I_{\lambda})_{{\lambda}\in\Lambda}: a partition of the set I.
(\mathcal{E}_i)_{i\in I}: a family, where each \mathcal{E}_i is a set of subsets of \Omega_i.
\prod_{i\in I} A_i: a rectangle of the family (\mathcal{E}_i)_{i\in I}.
\coprod_{i\in I} \mathcal{E}_i: the set of all rectangles of the family (\mathcal{E}_i)_{i\in I}.
\mathcal{E}_1 \coprod \ldots \coprod \mathcal{E}_n: the set of all rectangles when I = \mathbf{N}_n.
(\Omega_i, \mathcal{F}_i)_{i \in I}: a family of measurable spaces indexed by I.
\coprod_{i\in I} \mathcal{F}_i: the set of measurable rectangles, the rectangles of (\mathcal{F}_i)_{i\in I}.
```

 $\bigotimes_{i\in I} \mathcal{F}_i$: the product σ -algebra of $(\mathcal{F}_i)_{i\in I}$ on $\Pi_{i\in I}\Omega_i$. $\sigma(\coprod_{i\in I} \mathcal{F}_i)$: the σ -algebra generated by the measurable rectangles. $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$: the product σ -algebra when $I = \mathbf{N}_n$.

 $\sigma(\mathcal{E}_i)$: the σ -algebra on Ω_i , generated by \mathcal{E}_i .

 $\bigotimes_{i \in I} \sigma(\mathcal{E}_i)$: the product σ -algebra of $(\sigma(\mathcal{E}_i))_{i \in I}$ on $\Pi_{i \in I} \Omega_i$.

 $\coprod_{i\in I} \sigma(\mathcal{E}_i)$: the set of measurable rectangles of $(\sigma(\mathcal{E}_i))_{i\in I}$.

 $\mathcal{T}_{\mathbf{R}}$: the usual toplogy on \mathbf{R} .

 $\mathcal{T}_{\mathbf{R}} \coprod \ldots \coprod \mathcal{T}_{\mathbf{R}}$: set of rectangles when $I = \mathbf{N}_n$ and $\mathcal{E}_i = \mathcal{T}_{\mathbf{R}}$.

 \mathcal{A} : a set of subsets of Ω .

 $\mathcal{T}(\mathcal{A})$: the topology on Ω , generated by \mathcal{A} .

 $(\Omega_i, \mathcal{T}_i)_{i \in I}$: a family of topological spaces indexed by I.

 $\coprod_{i\in I} \mathcal{T}_i$: the set of rectangles of $(\mathcal{T}_i)_{i\in I}$.

 $\bigcirc_{i\in I}\mathcal{T}_i$: the product topology of $(\mathcal{T}_i)_{i\in I}$ on $\Pi_{i\in I}\Omega_i$.

 $\mathcal{B}(\Omega_i)$: the Borel σ -algebra on $(\Omega_i, \mathcal{T}_i)$.

 $\bigotimes_{i \in I} \mathcal{B}(\Omega_i)$: product σ -algebra of $(\mathcal{B}(\Omega_i))_{i \in I}$ on $\Pi_{i \in I} \Omega_i$.

 \mathcal{H} : a countable base of (Ω, \mathcal{T}) .

 $\mathcal{B}(\Pi_{i\in I}\Omega_i)$: the Borel σ -algebra for the product topology.

```
E^{\omega_1}: \omega_1-section of a subset E of \Omega_1 \times \Omega_2.

\mathcal{F}_1 \coprod \mathcal{F}_2: set of measurable rectangles of \mathcal{F}_1 and \mathcal{F}_2.

\mathcal{F}_1 \otimes \mathcal{F}_2: product \sigma-algebra of \mathcal{F}_1 and \mathcal{F}_2.

\mathcal{B}(E): Borel \sigma-algebra on a metric space (E,d).

\Omega_n \uparrow \Omega: for all n \geq 1, \Omega_n \subseteq \Omega_{n+1} and \Omega = \bigcup_{n=1}^{+\infty} \Omega_n.

\mu_1 \otimes \ldots \otimes \mu_n: product of \sigma-finite measures.

dx^n: the Lebesgue measure on (\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n)).

\mathbf{N}_n: the set \{1,\ldots,n\}.

\sigma: a permutation, i.e. a bijection \sigma:\mathbf{N}_n \to \mathbf{N}_n.

f_p \uparrow f: For all p \geq 1, f_p \leq f_{p+1} and f = \lim f_p.

\int_{\Omega_n} f(\omega, x) d\mu_2(x): the integral of f(\omega, \bullet) w.r. to \mu_2, \omega \in \Omega_1.
```

8. Tutorial 8

 $\lim_{x \downarrow \downarrow x_0} \phi(x)$: the limit of $\phi(x)$ as $x \to x_0$ with $x_0 < x$. $\mathcal{T}_{|K}$: the induced topology on K.

 $\delta(A)$: the diameter of a set A.

 $\inf_{x\in\Omega} f(x)$: the infimum of $f(\Omega)$.

 $\sup_{x\in\Omega} f(x)$: the supremum of $f(\Omega)$.

f'(c): the derivative of f evaluated at c.

 $f^{(k)}(a)$: the k^{th} derivative of f evaluated at a.

 C^n : [of class] for all $k \leq n$, $f^{(k)}$ exists and is continuous.

 (Ω, \mathcal{F}, P) : a probability space.

 (S,Σ) : a measurable space.

E[X]: the expectation of the random variable X.

 $\phi \circ X$: the composition $\phi \circ X(\omega) = \phi(X(\omega))$.

9. Tutorial 9

 $(\Omega, \mathcal{F}, \mu)$: a measure space.

 $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$: set of **R**-valued measurable maps f, with $||f||_p < +\infty$.

 $L^{p}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$: set of C-valued measurable maps f, with $||f||_{p} < +\infty$.

 $||f||_p : p\text{-norm of } f$. For $p \in [1, +\infty[, ||f||_p = (\int |f|^p d\mu)^{1/p}]$. $||f||_{\infty} : \infty\text{-norm of } f$. $||f||_{\infty} = \inf\{M \in \mathbf{R}^+ : |f| \le M, \mu\text{-a.s.}\}$.

 $B(f,\epsilon)$: the open ball in $L^p_{\mathbf{R}}(\Omega,\mathcal{F},\mu)$ or $L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$. $x_n \overset{\mathcal{T}}{\to} x: (x_n)_{n\geq 1}$ converges to x, with respect to the topology \mathcal{T} . $f_n \overset{L^p}{\to} f: (f_n)_{n\geq 1}$ converges to f in L^p . $||f_n - f||_p \to 0$. $f_n \to f: (f_n)_{n\geq 1}$ converges to f, simply: $f_n(x) \to f(x)$ for all x. $f_n \to f$, μ -a.s. : $f_n(x) \to f(x)$ for μ -almost all x. $(f_{n_k})_{k\geq 1}:$ a sub-sequence of $(f_n)_{n\geq 1}$.

10. Tutorial 10

 \mathbf{K} : the field \mathbf{R} or \mathbf{C} .

 \mathbf{N}^* : the set of positive integers, $\mathbf{N}^* = \{1, 2, 3, \ldots\}.$

 $\mathcal{T}_{\mathbf{R}^n}$: usual topology on \mathbf{R}^n . $\mathcal{T}_{\bar{\mathbf{R}}}$: usual topology on $\bar{\mathbf{R}}$.

 $x_n \xrightarrow{\mathcal{T}} x$: convergence with respect to a topology \mathcal{T} .

 $d_{\mathbf{C}^n}$: usual metric on \mathbf{C}^n .

 $d_{\mathbf{R}^n}$: usual metric on \mathbf{R}^n .

 $\delta(A)$: diameter of A, $\delta(A) = \sup\{d(x, y) : x, y \in A\}$.

```
\bar{F}: closure of the set F.
```

 \bar{z} : complex conjugate of z. If z = a + ib, $\bar{z} = a - ib$.

 $\langle \cdot, \cdot \rangle$: an inner-product on a **K**-vector space.

 $\|\cdot\|$: the norm induced by an inner product, $\|\cdot\| = \sqrt{\langle\cdot,\cdot\rangle}$.

 $\mathcal{T}_{\langle\cdot,\cdot\rangle}$: norm topology induced by an inner-product.

 \mathcal{G}^{\perp} : orthogonal of a set \mathcal{G} w.r. to some inner-product.

[f]: μ -almost sure equivalence class of f in $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

11. Tutorial 11

 \mathbf{N}^* : the set of positive integers $\mathbf{N}^* = \{1, 2, 3, \ldots\}.$

Z: the set of integers **Z** = $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$.

 (Ω, \mathcal{F}) : a measurable space.

 σ : a bijection between \mathbf{N}^* and itself.

dx: the Lebesgue measure on $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$.

 $M^1(\Omega, \mathcal{F})$: set of complex measures on (Ω, \mathcal{F}) .

```
|z|: modulus of complex number z.

|\mu(E)|: modulus of complex number \mu(E).

|\mu|: total variation of complex measure \mu.

|\mu|(E): |\mu|-measure of the measurable set E.

\mu^+: positive part of signed measure \mu, \mu^+ = (|\mu| + \mu)/2.

\mu^-: negative part of signed measure \mu, \mu^- = (|\mu| - \mu)/2.
```

```
(\Omega, \mathcal{F}): a measurable space. \nu << \mu: the measure \nu is absolutely continuous w.r. to \mu. \limsup_{n\geq 1} E_n: the set \cap_{n\geq 1} \cup_{k\geq n} E_k, also denoted \{E_n: \text{i.o.}\}. M^1(\Omega, \mathcal{F}): set of complex measures on (\Omega, \mathcal{F}). |\nu|: total variation of complex measure \nu. E_n \uparrow E: E_n \subseteq E_{n+1} for all n\geq 1, and E=\cup_{n\geq 1} E_n. u^+: positive part of function u, u^+=u \lor 0=\max(u,0). \mu^+: positive part of signed measure \mu, \mu^+=(|\mu|+\mu)/2. \mathcal{F}_{|A}: trace of \sigma-algebra \mathcal{F} on A, \mathcal{F}_{|A}=\{A\cap E: E\in \mathcal{F}\}.
```

 $\mu_{|A}$: restriction of μ to $\mathcal{F}_{|A}$. μ^A : the complex measure $\mu(A \cap \cdot)$ on (Ω, \mathcal{F}) . $|\mu^A|$: total variation of the complex measure μ^A on (Ω, \mathcal{F}) . $|\mu_{|A}|$: total variation of the complex measure $\mu_{|A}$ on $(A, \mathcal{F}_{|A})$. $|\mu|_A$: the measure $|\mu|(A \cap \cdot)$. $|\mu|_A$: restriction of $|\mu|$ to $\mathcal{F}_{|A}$. $f_{|A}$: restriction of the map f to A. $\int f_{|A} d\mu_{|A}$: integral of $f_{|A}$ on the measure space $(A, \mathcal{F}_{|A}, \mu_{|A})$. $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$: product of the σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$. $||\mu||$: total mass of total variation of μ , $||\mu|| = |\mu|(\Omega)$.

13. Tutorial 13

 \mathbf{K} : the field \mathbf{R} or $\mathbf{C}.$

 $S_{\mathbf{K}}(\Omega, \mathcal{F})$: set of **K**-valued complex simple functions on (Ω, \mathcal{F}) .

 $C^b_{\mathbf{K}}(\Omega)$: set of **K**-valued continuous and bounded maps on Ω .

 $M^1(\Omega, \mathcal{B}(\Omega))$: set of complex Borel measures on Ω .

d(x, A): distance from x to A, $d(x, A) = \inf\{d(x, y) : y \in A\}$.

 \bar{A} : closure of the set A.

 $\bar{A}^{\Omega'}$: closure of the set A, relative to the induced topology on Ω' .

 $B(x,\epsilon)$: open ball with center x and radius ϵ in a metric space.

 $supp(\phi)$: support of ϕ , closure of $\{\phi \neq 0\}$.

 $C^c_{\mathbf{K}}(\Omega)$: set of K-valued continuous maps with compact support.

14. Tutorial 14

|b|: total variation map of $b: \mathbf{R}^+ \to \mathbf{C}$.

|b(t)|: modulus of complex number b(t).

|b|(t): total variation of b evaluated at $t \in \mathbf{R}^+$.

|f(t)|: modulus of complex number f(t).

 $\mathcal{B}(\mathbf{R}^+)$, $\mathcal{B}(\mathbf{C})$: Borel σ -algebras on \mathbf{R}^+ and \mathbf{C} .

ds: Lebesgue measure on $(\mathbf{R}^+, \mathcal{B}(\mathbf{R}^+))$.

 $|b|^+$: positive variation of b.

 $|b|^-$: negative variation of b.

db: complex Stieltjes measure associated with b.

 b^T : stopped map defined by $b^T(t) = b(t \wedge T)$.

 $C_{\mathbf{c}}^{c}(\mathbf{R}^{+})$: C-valued continuous maps on \mathbf{R}^{+} with compact support.

 $C^b_{\mathbf{C}}(\mathbf{R}^+)$: C-valued continuous maps on \mathbf{R}^+ which are bounded.

b(t-): left-limit of b at t.

 $\Delta b(t)$: jump of b at $t,\,\Delta b(t)=b(t)-b(t-).$

15. Tutorial 15

```
d|b|: Stieltjes measure on \mathbf{R}^+ associated with total variation |b|. L^1_{\mathbf{C}}(b): \mathbf{C}-valued, measurable maps f with \int_{\mathbf{R}^+} |f|d|b| < +\infty. L^{1,loc}_{\mathbf{C}}(b): measurable maps with \int_0^t |f|d|b| < +\infty for all t \in \mathbf{R}^+. \int_0^t \dots: partial Lebesgue integral on interval [0,t]. |db|: total variation of complex Stieltjes measure db. t_n \downarrow \downarrow t: t < t_{n+1} \le t_n for all n \ge 1, and t = \inf_{n \ge 1} t_n. da: Stieltjes measure on \mathbf{R}^+ associated with a. f.a: the map defined by (f.a)(t) = \int_0^t f da. d(f.a): Stieltjes measure on \mathbf{R}^+ associated with f.a. a^T: stopped map defined by a^T = a(t \land T).
```

 $d(f.a)^T$: Stieltjes measure on \mathbf{R}^+ associated with $(f.a)^T$. $|d(f.a)^T|$: total variation of measure $d(f.a)^T$. $\Delta a(t)$: jump of a at t, $\Delta a(t) = a(t) - a(t-)$.

 $d|b| \ll da$: d|b| is absolutely continuous w.r. to da.

16. Tutorial 16

 $\mathcal{B}(\Omega)$: Borel σ -algebra on Ω .

 $L^1_{\mathbf{R}}(\Omega,\mathcal{B}(\Omega),\mu)$: real valued Borel measurable f's with $\int |f| d\mu < +\infty$.

 $\mathcal{T}_{|A}$: induced topology on A, $\mathcal{T}_{|A} = \{A \cap V : V \in \mathcal{T}\}.$

 $\mathcal{T}_{\mathbf{R}}$: usual topology on \mathbf{R} .

 $|\mu|$: total variation of complex measure μ .

 $M\mu$: maximal function of complex measure μ .

 $B(x,\epsilon)$: open ball with center x and radius ϵ .

 \mathbf{N}_p : the set $\{1,\ldots,p\}$.

 $\|\mu\|$: total mass of total variation, $\|\mu\| = |\mu|(\mathbf{R}^n)$.

Mf: maximal function of f.

 $dx(B(x,\epsilon))$: Lebesgue measure of open ball $B(x,\epsilon)$ in \mathbb{R}^n .

17. Tutorial 17

 \mathbf{K} : the field \mathbf{R} or \mathbf{C} .

 $\mathcal{M}_n(\mathbf{K})$: set of $n \times n$ matrices with **K**-valued entries.

 e_1, \ldots, e_n : canonical basis of \mathbf{K}^n .

 μ^X , $X(\mu)$: law, distribution of X under μ , image measure of μ by X.

 $X^{-1}(B), \{X \in B\}$: inverse image of B by X.

 $Y \circ X$: composition of X and Y, $(Y \circ X)(\omega) = Y(X(\omega))$.

 τ_a : translation mapping of vector a in \mathbf{R}^n .

 \uplus : union of pairwise disjoint sets.

 $\mathcal{B}(\mathbf{R}^n)$: Borel σ -algebra on \mathbf{R}^n .

 $\sigma(\mathcal{C})$: σ -algebra on \mathbb{R}^n generated by \mathcal{C} .

dx: Lebesgue measure on \mathbb{R}^n .

 $\det \Sigma$: determinant of matrix Σ .

 $\dim V$: dimension of liear subspace V of \mathbf{R}^n .

 \mathbf{K} : the field \mathbf{R} or \mathbf{C} .

 $N, \|\cdot\|$: norm on a **K**-vector space.

 $E, F : \mathbf{K}$ -normed spaces.

 $\mathcal{L}_K(E,F)$: set of continuous linear maps $l:E\to F$.

 $d\phi(a)$: differential of ϕ at a.

 $d\phi$: differential mapping of ϕ .

 $\frac{\partial \phi}{\partial x_i}(a)$: *i*-th partial derivative of ϕ at a.

 $l_{|U}$: restriction of l to U.

 $J(\phi)(a)$: jacobian of ϕ at a, determinant of $d\phi(a)$.

 $\mathcal{B}(\mathbf{R}^n)$: Borel σ -algebra on \mathbf{R}^n .

 $dx_{|\Omega}$: Lebesgue measure on $\Omega \in \mathcal{B}(\mathbf{R}^n)$, restriction of dx to $\mathcal{B}(\Omega)$.

 $B(a,\epsilon)$: open ball with center a and radius ϵ .

 $\phi(dx_{|\Omega}): \text{ image measure of } dx_{|\Omega} \text{ by } \phi, \, \phi(dx_{|\Omega})(B) = dx_{|\Omega}(\phi^{-1}(B)).$

 $\int |J(\psi)| dx_{|\Omega'}$: measure on Ω' with density $|J(\psi)|$ w.r. to $dx_{|\Omega'}$.

 $C^{1}(\mathbf{R}, \mathbf{R})$: real, continuously differentiable maps on \mathbf{R} .

 $\mu_1 \star \ldots \star \mu_p$: the convolution of μ_1, \ldots, μ_p .

 $\mu \star \nu$: the convolution of μ and ν .

 $\mu \otimes \nu$: the product measure of μ and ν .

B-x: the set $\{y \in \mathbf{R}^n : y+x \in B\}$.

 δ_a : dirac probability measure on \mathbb{R}^n , centered in $a \in \mathbb{R}^n$.

 τ_a : translation mapping on \mathbf{R}^n , $\tau_a(x) = a + x$.

 $\mathcal{B}(\mathbf{R}^n) \otimes \mathcal{B}(\mathbf{R}^n)$: product of Borel σ -algebras on $\mathbf{R}^n \times \mathbf{R}^n$.

 $\mathcal{F}\mu$: Fourier transform of complex measure μ .

 $C^b_{\mathbf{R}}(\Omega)$: set of real functions on Ω , which are continuous and bounded.

 $\mu_k \to \mu$, narrowly: for all $f \in C^b_{\mathbf{R}}(\Omega)$, $\int f d\mu_k \to \int f d\mu$.

 ϕ_X : characteristic function of \mathbf{R}^n -valued random variable X.

 $|\alpha|$: for $\alpha \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \ldots + \alpha_n$.

 x^{α} : for $\alpha \in \mathbf{N}^n$ and $x \in \mathbf{R}^n$, $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$.

 $\partial^{\alpha} f$: the $|\alpha|$ -th order partial derivative of f, $\partial^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} ... \partial x_{n}^{\alpha_{n}}}$.

 $x^{\alpha}\mu: x^{\alpha}\mu = \int x^{\alpha}d\mu$, measure with density x^{α} w.r. to μ .

 $\mathcal{M}_n(\mathbf{R})$: set of $n \times n$ matrices with real entries.

 M^t : transposed matrix of M.

 M^{-1} : inverse matrix of non-singular matrix M.

 $\langle u, Mu \rangle$: inner-product in \mathbf{R}^n of u and Mu.

 Σ : a symmetric and non-negative $n\times n$ real matrix.

 $\phi(\mu)$: image measure of μ by ϕ , $\phi(\mu)(B) = \mu(\phi^{-1}(B))$.

 $\mathcal{F}P(u)$: Fourier transform of probability P, evaluated at u.

 $N_n(m,\Sigma)$: Gaussian measure on \mathbb{R}^n with mean m and covariance Σ .

 $N_1(0,1)$: reduced Gaussian measure on **R**.

 x^{α} : for $\alpha \in \mathbf{N}^n$ and $x \in \mathbf{R}^n$, $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$.

cov(X,Y) : covariance between square-integrable variables X and Y.

var(X): variance of square-integrable random variable X.

 δ_0, δ_1 : dirac probability measures on **R**, centered in 0 and 1.

 $\det \Sigma$: determinant of matrix Σ .

dx: Lebesgue measure on \mathbb{R}^n .