13. Regular Measure

In the following, K denotes R or C.

Definition 99 Let (Ω, \mathcal{F}) be a measurable space. We say that a map $s : \Omega \to \mathbf{C}$ is a **complex simple function** on (Ω, \mathcal{F}) , if and only if it is of the form:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbf{C}$ and $A_i \in \mathcal{F}$ for all $i \in \mathbf{N}_n$. The set of all complex simple functions on (Ω, \mathcal{F}) is denoted $S_{\mathbf{C}}(\Omega, \mathcal{F})$. The set of all \mathbf{R} -valued complex simple functions in (Ω, \mathcal{F}) is denoted $S_{\mathbf{R}}(\Omega, \mathcal{F})$.

Recall that a simple function on (Ω, \mathcal{F}) , as defined in (40), is just a non-negative element of $S_{\mathbf{R}}(\Omega, \mathcal{F})$.

EXERCISE 1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in [1, +\infty[$.

1. Suppose $s: \Omega \to \mathbf{C}$ is of the form

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbf{C}$, $A_i \in \mathcal{F}$ and $\mu(A_i) < +\infty$ for all $i \in \mathbf{N}_n$. Show that $s \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$.

2. Show that any $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$ can be written as:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbf{C} \setminus \{0\}$, $A_i \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$.

3. Show that any $s \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$ is of the form:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbb{C}$, $A_i \in \mathcal{F}$ and $\mu(A_i) < +\infty$, for all $i \in \mathbb{N}_n$.

4. Show that $L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F}) = S_{\mathbf{C}}(\Omega, \mathcal{F}).$

EXERCISE 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in [1, +\infty[$. Let f be a non-negative element of $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$.

- 1. Show the existence of a sequence $(s_n)_{n\geq 1}$ of non-negative functions in $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $s_n \uparrow f$.
- 2. Show that:

$$\lim_{n \to +\infty} \int |s_n - f|^p d\mu = 0$$

- 3. Show that there exists $s \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $||f s||_p \leq \epsilon$, for all $\epsilon > 0$.
- 4. Show that $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

EXERCISE 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let f be a non-negative element of $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. For all $n \geq 1$, we define:

$$s_n \stackrel{\triangle}{=} \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} 1_{\{k/2^n \le f < (k+1)/2^n\}} + n 1_{\{n \le f\}}$$

- 1. Show that for all $n \geq 1$, s_n is a simple function.
- 2. Show there exists $n_0 \geq 1$ and $N \in \mathcal{F}$ with $\mu(N) = 0$, such that:

$$\forall \omega \in N^c$$
, $0 \le f(\omega) < n_0$

3. Show that for all $n \geq n_0$ and $\omega \in \mathbb{N}^c$, we have:

$$0 \le f(\omega) - s_n(\omega) < \frac{1}{2^n}$$

4. Conclude that:

$$\lim_{n \to +\infty} \|f - s_n\|_{\infty} = 0$$

5. Show the following:

Theorem 67 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in [1, +\infty]$. Then, $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

EXERCISE 4. Let (Ω, \mathcal{T}) be a metrizable topological space, and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. We define Σ as the set of all $B \in \mathcal{B}(\Omega)$ such that for all $\epsilon > 0$, there exist F closed and G open in Ω , with:

$$F \subseteq B \subseteq G$$
, $\mu(G \setminus F) \le \epsilon$

Given a metric d on (Ω, \mathcal{T}) inducing the topology \mathcal{T} , we define:

$$d(x, A) \stackrel{\triangle}{=} \inf\{d(x, y) : y \in A\}$$

for all $A \subseteq \Omega$ and $x \in \Omega$.

1. Show that $x \to d(x, A)$ from Ω to $\bar{\mathbf{R}}$ is continuous for all $A \subseteq \Omega$.

2. Show that if F is closed in Ω , $x \in F$ is equivalent to d(x, F) = 0.

EXERCISE 5. Further to exercise (4), we assume that F is a closed subset of Ω . For all $n \geq 1$, we define:

$$G_n \stackrel{\triangle}{=} \{x \in \Omega : d(x, F) < \frac{1}{n}\}$$

- 1. Show that G_n is open for all $n \geq 1$.
- 2. Show that $G_n \downarrow F$.
- 3. Show that $F \in \Sigma$.
- 4. Was it important to assume that μ is finite?
- 5. Show that $\Omega \in \Sigma$.
- 6. Show that if $B \in \Sigma$, then $B^c \in \Sigma$.

EXERCISE 6. Further to exercise (5), let $(B_n)_{n\geq 1}$ be a sequence in Σ . Define $B = \bigcup_{n=1}^{+\infty} B_n$ and let $\epsilon > 0$.

1. Show that for all n, there is F_n closed and G_n open in Ω , with:

$$F_n \subseteq B_n \subseteq G_n , \ \mu(G_n \setminus F_n) \le \frac{\epsilon}{2^n}$$

2. Show the existence of some $N \geq 1$ such that:

$$\mu\left(\left(\bigcup_{n=1}^{+\infty} F_n\right) \setminus \left(\bigcup_{n=1}^{N} F_n\right)\right) \le \epsilon$$

- 3. Define $G = \bigcup_{n=1}^{+\infty} G_n$ and $F = \bigcup_{n=1}^{N} F_n$. Show that F is closed, G is open and $F \subseteq B \subseteq G$.
- 4. Show that:

$$G \setminus F \subseteq G \setminus \left(\bigcup_{n=1}^{+\infty} F_n\right) \ \uplus \ \left(\bigcup_{n=1}^{+\infty} F_n\right) \setminus F$$

5. Show that:

$$G \setminus \left(\bigcup_{n=1}^{+\infty} F_n\right) \subseteq \bigcup_{n=1}^{+\infty} G_n \setminus F_n$$

- 6. Show that $\mu(G \setminus F) \leq 2\epsilon$.
- 7. Show that Σ is a σ -algebra on Ω , and conclude that $\Sigma = \mathcal{B}(\Omega)$.

Theorem 68 Let (Ω, \mathcal{T}) be a metrizable topological space, and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $B \in \mathcal{B}(\Omega)$ and $\epsilon > 0$, there exist F closed and G open in Ω such that:

$$F \subseteq B \subseteq G$$
, $\mu(G \setminus F) \le \epsilon$

Definition 100 Let (Ω, T) be a topological space. We denote $C^b_{\mathbf{K}}(\Omega)$ the \mathbf{K} -vector space of all **continuous**, **bounded** maps $\phi : \Omega \to \mathbf{K}$, where $\mathbf{K} = \mathbf{R}$ or $\mathbf{K} = \mathbf{C}$.

EXERCISE 7. Let (Ω, \mathcal{T}) be a metrizable topological space with some metric d. Let μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$ and F be a closed subset of Ω . For all $n \geq 1$, we define $\phi_n : \Omega \to \mathbf{R}$ by:

$$\forall x \in \Omega , \ \phi_n(x) \stackrel{\triangle}{=} 1 - 1 \wedge (nd(x, F))$$

- 1. Show that for all $p \in [1, +\infty]$, we have $C_{\mathbf{K}}^b(\Omega) \subseteq L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$.
- 2. Show that for all $n \geq 1$, $\phi_n \in C^b_{\mathbf{R}}(\Omega)$.
- 3. Show that $\phi_n \to 1_F$.
- 4. Show that for all $p \in [1, +\infty[$, we have:

$$\lim_{n \to +\infty} \int |\phi_n - 1_F|^p d\mu = 0$$

5. Show that for all $p \in [1, +\infty[$ and $\epsilon > 0$, there exists $\phi \in C^b_{\mathbf{R}}(\Omega)$ such that $\|\phi - 1_F\|_p \le \epsilon$.

6. Let $\nu \in M^1(\Omega, \mathcal{B}(\Omega))$. Show that $C^b_{\mathbf{C}}(\Omega) \subseteq L^1_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), \nu)$ and:

$$\nu(F) = \lim_{n \to +\infty} \int \phi_n d\nu$$

7. Prove the following:

Theorem 69 Let (Ω, \mathcal{T}) be a metrizable topological space and μ, ν be two complex measures on $(\Omega, \mathcal{B}(\Omega))$ such that:

$$\forall \phi \in C^b_{\mathbf{R}}(\Omega) \ , \ \int \phi d\mu = \int \phi d\nu$$

Then $\mu = \nu$.

EXERCISE 8. Let (Ω, \mathcal{T}) be a metrizable topological space and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega))$ be a complex

simple function:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbb{C}$, $A_i \in \mathcal{B}(\Omega)$ for all $i \in \mathbb{N}_n$. Let $p \in [1, +\infty[$.

1. Show that given $\epsilon > 0$, for all $i \in \mathbb{N}_n$ there is a closed subset F_i of Ω such that $F_i \subseteq A_i$ and $\mu(A_i \setminus F_i) \leq \epsilon$. Let:

$$s' \stackrel{\triangle}{=} \sum_{i=1}^{n} \alpha_i 1_{F_i}$$

2. Show that:

$$||s - s'||_p \le \left(\sum_{i=1}^n |\alpha_i|\right) \epsilon^{\frac{1}{p}}$$

3. Conclude that given $\epsilon > 0$, there exists $\phi \in C^b_{\mathbf{C}}(\Omega)$ such that:

$$\|\phi - s\|_p \le \epsilon$$

4. Prove the following:

Theorem 70 Let (Ω, \mathcal{T}) be a metrizable topological space and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $p \in [1, +\infty[$, $C_{\mathbf{K}}^b(\Omega)$ is dense in $L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$.

Definition 101 A topological space (Ω, \mathcal{T}) is said to be σ -compact if and only if, there exists a sequence $(K_n)_{n\geq 1}$ of compact subsets of Ω such that $K_n \uparrow \Omega$.

EXERCISE 9. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space, with metric d. Let Ω' be open in Ω . For all $n \geq 1$, we define:

$$F_n \stackrel{\triangle}{=} \{ x \in \Omega : d(x, (\Omega')^c) \ge 1/n \}$$

Let $(K_n)_{n\geq 1}$ be a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$.

1. Show that for all $n \geq 1$, F_n is closed in Ω .

- 2. Show that $F_n \uparrow \Omega'$.
- 3. Show that $F_n \cap K_n \uparrow \Omega'$.
- 4. Show that $F_n \cap K_n$ is closed in K_n for all $n \geq 1$.
- 5. Show that $F_n \cap K_n$ is a compact subset of Ω' for all $n \geq 1$.
- 6. Prove the following:

Theorem 71 Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Then, for all Ω' open subsets of Ω , the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ is itself metrizable and σ -compact.

Definition 102 Let (Ω, T) be a topological space and μ be a measure on $(\Omega, \mathcal{B}(\Omega))$. We say that μ is **locally finite**, if and only if, every $x \in \Omega$ has an open neighborhood of finite μ -measure, i.e.

$$\forall x \in \Omega , \exists U \in \mathcal{T} , x \in U , \mu(U) < +\infty$$

Definition 103 If μ is a measure on a Hausdorff topological space Ω : We say that μ is inner-regular, if and only if, for all $B \in \mathcal{B}(\Omega)$:

$$\mu(B) = \sup\{\mu(K) : K \subseteq B , K compact\}$$

We say that μ is **outer-regular**, if and only if, for all $B \in \mathcal{B}(\Omega)$:

$$\mu(B) = \inf\{\mu(G) : B \subseteq G , G \text{ open}\}\$$

We say that μ is regular if it is both inner and outer-regular.

EXERCISE 10. Let (Ω, \mathcal{T}) be a Hausdorff topological space, μ a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$, and K a compact subset of Ω .

- 1. Show the existence of open sets V_1, \ldots, V_n with $\mu(V_i) < +\infty$ for all $i \in \mathbf{N}_n$ and $K \subseteq V_1 \cup \ldots \cup V_n$, where $n \ge 1$.
- 2. Conclude that $\mu(K) < +\infty$.

EXERCISE 11. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $(K_n)_{n>1}$ be a

sequence of compact subsets of Ω such that $K_n \uparrow \Omega$. Let $B \in \mathcal{B}(\Omega)$. We define $\alpha = \sup\{\mu(K) : K \subseteq B, K \text{ compact}\}.$

- 1. Show that given $\epsilon > 0$, there exists F closed in Ω such that $F \subseteq B$ and $\mu(B \setminus F) \le \epsilon$.
- 2. Show that $F \setminus (K_n \cap F) \downarrow \emptyset$.
- 3. Show that $K_n \cap F$ is closed in K_n .
- 4. Show that $K_n \cap F$ is compact.
- 5. Conclude that given $\epsilon > 0$, there exists K compact subset of Ω such that $K \subseteq F$ and $\mu(F \setminus K) \le \epsilon$.
- 6. Show that $\mu(B) \leq \mu(K) + 2\epsilon$.
- 7. Show that $\mu(B) \leq \alpha$ and conclude that μ is inner-regular.

EXERCISE 12. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $(K_n)_{n>1}$ be

a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$. Let $B \in \mathcal{B}(\Omega)$, and $\alpha \in \mathbf{R}$ be such that $\alpha < \mu(B)$.

- 1. Show that $\mu(K_n \cap B) \uparrow \mu(B)$.
- 2. Show the existence of $K \subseteq \Omega$ compact, with $\alpha < \mu(K \cap B)$.
- 3. Let $\mu^K = \mu(K \cap \cdot)$. Show that μ^K is a finite measure, and conclude that $\mu^K(B) = \sup\{\mu^K(K^*): K^* \subseteq B, K^* \text{ compact}\}.$
- 4. Show the existence of a compact subset K^* of Ω , such that $K^* \subseteq B$ and $\alpha < \mu(K \cap K^*)$.
- 5. Show that K^* is closed in Ω .
- 6. Show that $K \cap K^*$ is closed in K.
- 7. Show that $K \cap K^*$ is compact.
- 8. Show that $\alpha < \sup\{\mu(K') : K' \subseteq B, K' \text{ compact}\}.$

- 9. Show that $\mu(B) \leq \sup \{ \mu(K') : K' \subseteq B, K' \text{ compact} \}.$
- 10. Conclude that μ is inner-regular.

EXERCISE 13. Let (Ω, \mathcal{T}) be a metrizable topological space.

- 1. Show that (Ω, \mathcal{T}) is separable if and only if it has a countable base.
- 2. Show that if (Ω, \mathcal{T}) is compact, for all $n \geq 1$, Ω can be covered by a finite number of open balls with radius 1/n.
- 3. Show that if (Ω, \mathcal{T}) is compact, then it is separable.

EXERCISE 14. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space with metric d. Let $(K_n)_{n\geq 1}$ be a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$.

- 1. For all $n \geq 1$, give a metric on K_n inducing the topology $\mathcal{T}_{|K_n}$.
- 2. Show that $(K_n, \mathcal{T}_{|K_n})$ is separable.
- 3. Let $(x_n^p)_{p\geq 1}$ be an at most countable sequence of $(K_n, \mathcal{T}_{|K_n})$, which is dense. Show that $(x_n^p)_{n,p\geq 1}$ is an at most countable dense family of (Ω, \mathcal{T}) , and conclude with the following:

Theorem 72 Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Then, (Ω, \mathcal{T}) is separable and has a countable base.

EXERCISE 15. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let \mathcal{H} be a countable base of (Ω, \mathcal{T}) . We define $\mathcal{H}' = \{V \in \mathcal{H} : \mu(V) < +\infty\}$.

1. Show that for all U open in Ω and $x \in U$, there is U_x open in Ω such that $x \in U_x \subseteq U$ and $\mu(U_x) < +\infty$.

- 2. Show the existence of $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U_x$.
- 3. Conclude that \mathcal{H}' is a countable base of (Ω, \mathcal{T}) .
- 4. Show the existence of a sequence $(V_n)_{n\geq 1}$ of open sets in Ω with:

$$\Omega = \bigcup_{n=1}^{+\infty} V_n \ , \ \mu(V_n) < +\infty \ , \ \forall n \ge 1$$

EXERCISE 16. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $(V_n)_{n\geq 1}$ a sequence of open subsets of Ω such that:

$$\Omega = \bigcup_{n=1}^{+\infty} V_n , \ \mu(V_n) < +\infty , \ \forall n \ge 1$$

Let $B \in \mathcal{B}(\Omega)$ and $\alpha = \inf\{\mu(G) : B \subseteq G, G \text{ open}\}.$

- 1. Given $\epsilon > 0$, show that there exists G_n open in Ω such that $B \subseteq G_n$ and $\mu^{V_n}(G_n \setminus B) \le \epsilon/2^n$, where $\mu^{V_n} = \mu(V_n \cap \cdot)$.
- 2. Let $G = \bigcup_{n=1}^{+\infty} (V_n \cap G_n)$. Show that G is open in Ω , and $B \subseteq G$.
- 3. Show that $G \setminus B = \bigcup_{n=1}^{+\infty} V_n \cap (G_n \setminus B)$.
- 4. Show that $\mu(G) \leq \mu(B) + \epsilon$.
- 5. Show that $\alpha \leq \mu(B)$.
- 6. Conclude that is μ outer-regular.
- 7. Show the following:

Theorem 73 Let μ be a locally finite measure on a metrizable and σ -compact topological space (Ω, \mathcal{T}) . Then, μ is regular, i.e.:

$$\mu(B) = \sup\{\mu(K): K \subseteq B, K \text{ compact}\}\$$

= $\inf\{\mu(G): B \subseteq G, G \text{ open}\}\$

for all $B \in \mathcal{B}(\Omega)$.

EXERCISE 17. Show the following:

Theorem 74 Let Ω be an open subset of \mathbb{R}^n , where $n \geq 1$. Any locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ is regular.

Definition 104 We call **strongly** σ -**compact** topological space, a topological space (Ω, \mathcal{T}) , for which there exists a sequence $(V_n)_{n\geq 1}$ of open sets with compact closure, such that $V_n \uparrow \Omega$.

Definition 105 We call **locally compact** topological space, a topological space (Ω, \mathcal{T}) , for which every $x \in \Omega$ has an open neighborhood with compact closure, i.e. such that:

$$\forall x \in \Omega , \exists U \in \mathcal{T} : x \in U , \bar{U} \text{ is compact}$$

EXERCISE 18. Let (Ω, \mathcal{T}) be a σ -compact and locally compact topological space. Let $(K_n)_{n\geq 1}$ be a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$.

- 1. Show that for all $n \geq 1$, there are open sets $V_1^n, \ldots, V_{p_n}^n, p_n \geq 1$, such that $K_n \subseteq V_1^n \cup \ldots \cup V_{p_n}^n$ and $\bar{V}_1^n, \ldots, \bar{V}_{p_n}^n$ are compact subsets of Ω .
- 2. Define $W_n = V_1^n \cup \ldots \cup V_{p_n}^n$ and $V_n = \bigcup_{k=1}^n W_k$, for $n \ge 1$. Show that $(V_n)_{n \ge 1}$ is a sequence of open sets in Ω with $V_n \uparrow \Omega$.
- 3. Show that $\bar{W}_n = \bar{V}_1^n \cup \ldots \cup \bar{V}_{p_n}^n$ for all $n \geq 1$.
- 4. Show that \bar{W}_n is compact for all $n \geq 1$.
- 5. Show that \bar{V}_n is compact for all $n \geq 1$
- 6. Conclude with the following:

Theorem 75 A topological space (Ω, \mathcal{T}) is strongly σ -compact, if and only if it is σ -compact and locally compact.

EXERCISE 19. Let (Ω, \mathcal{T}) be a topological space and Ω' be a subset of Ω . Let $A \subseteq \Omega'$. We denote $\bar{A}^{\Omega'}$ the closure of A in the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$, and \bar{A} its closure in Ω .

- 1. Show that $A \subseteq \Omega' \cap \bar{A}$.
- 2. Show that $\Omega' \cap \bar{A}$ is closed in Ω' .
- 3. Show that $\bar{A}^{\Omega'} \subseteq \Omega' \cap \bar{A}$.
- 4. Let $x \in \Omega' \cap \bar{A}$. Show that if $x \in U' \in \mathcal{T}_{|\Omega'|}$, then $A \cap U' \neq \emptyset$.
- 5. Show that $\bar{A}^{\Omega'} = \Omega' \cap \bar{A}$.

EXERCISE 20. Let (Ω, d) be a metric space.

1. Show that for all $x \in \Omega$ and $\epsilon > 0$, we have:

$$\overline{B(x,\epsilon)} \subseteq \{ y \in \Omega : \ d(x,y) \le \epsilon \}$$

- 2. Take $\Omega = [0, 1/2] \cup \{1\}$. Show that B(0, 1) = [0, 1/2].
- 3. Show that [0, 1/2] is closed in Ω .
- 4. Show that $\overline{B(0,1)} = [0, 1/2].$
- 5. Conclude that $\overline{B(0,1)} \neq \{y \in \Omega : |y| \le 1\} = \Omega$.

EXERCISE 21. Let (Ω, d) be a locally compact metric space. Let Ω' be an open subset of Ω . Let $x \in \Omega'$.

- 1. Show there exists U open with compact closure, such that $x \in U$.
- 2. Show the existence of $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U \cap \Omega'$.
- 3. Show that $\overline{B(x,\epsilon/2)} \subseteq \overline{U}$.
- 4. Show that $\overline{B(x,\epsilon/2)}$ is closed in \overline{U} .
- 5. Show that $\overline{B(x,\epsilon/2)}$ is a compact subset of Ω .

- 6. Show that $\overline{B(x,\epsilon/2)} \subseteq \Omega'$.
- 7. Let $U' = B(x, \epsilon/2) \cap \Omega' = B(x, \epsilon/2)$. Show $x \in U' \in \mathcal{T}_{|\Omega'}$, and:

$$\bar{U}'^{\Omega'} = \overline{B(x, \epsilon/2)}$$

- 8. Show that the induced topological space Ω' is locally compact.
- 9. Prove the following:

Theorem 76 Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space. Then, for all Ω' open subsets of Ω , the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ is itself metrizable and strongly σ -compact.

Definition 106 Let (Ω, \mathcal{T}) be a topological space, and $\phi : \Omega \to \mathbf{C}$ be a map. We call **support** of ϕ , the closure of the set $\{\phi \neq 0\}$, i.e.:

$$supp(\phi) \stackrel{\triangle}{=} \overline{\{\omega \in \Omega : \phi(\omega) \neq 0\}}$$

Definition 107 Let (Ω, \mathcal{T}) be a topological space. We denote $C_{\mathbf{K}}^{c}(\Omega)$ the K-vector space of all **continuous** map with **compact support** $\phi: \Omega \to \mathbf{K}$, where $\mathbf{K} = \mathbf{R}$ or $\mathbf{K} = \mathbf{C}$.

EXERCISE 22. Let (Ω, \mathcal{T}) be a topological space.

- 1. Show that $0 \in C^c_{\mathbf{K}}(\Omega)$.
- 2. Show that $C^c_{\mathbf{K}}(\Omega)$ is indeed a **K**-vector space.
- 3. Show that $C^c_{\mathbf{K}}(\Omega) \subseteq C^b_{\mathbf{K}}(\Omega)$.

EXERCISE 23. let (Ω, d) be a locally compact metric space. let K be a compact subset of Ω , and G be open in Ω , with $K \subseteq G$.

1. Show the existence of open sets V_1, \ldots, V_n such that:

$$K \subseteq V_1 \cup \ldots \cup V_n$$

and $\bar{V}_1, \ldots, \bar{V}_n$ are compact subsets of Ω .

- 2. Show that $V = (V_1 \cup \ldots \cup V_n) \cap G$ is open in Ω , and $K \subseteq V \subseteq G$.
- 3. Show that $\bar{V} \subseteq \bar{V}_1 \cup \ldots \cup \bar{V}_n$.
- 4. Show that \bar{V} is compact.
- 5. We assume $K \neq \emptyset$ and $V \neq \Omega$, and we define $\phi : \Omega \to \mathbf{R}$ by:

$$\forall x \in \Omega , \ \phi(x) \stackrel{\triangle}{=} \frac{d(x, V^c)}{d(x, V^c) + d(x, K)}$$

Show that ϕ is well-defined and continuous.

- 6. Show that $\{\phi \neq 0\} = V$.
- 7. Show that $\phi \in C^c_{\mathbf{R}}(\Omega)$.
- 8. Show that $1_K \leq \phi \leq 1_G$.
- 9. Show that if $K = \emptyset$, there is $\phi \in C_{\mathbf{R}}^c(\Omega)$ with $1_K \leq \phi \leq 1_G$.
- 10. Show that if $V = \Omega$ then Ω is compact.

11. Show that if $V = \Omega$, there $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ with $1_{K} \leq \phi \leq 1_{G}$.

Theorem 77 Let (Ω, \mathcal{T}) be a metrizable and locally compact topological space. Let K be a compact subset of Ω , and G be an open subset of Ω such that $K \subseteq G$. Then, there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$, real-valued continuous map with compact support, such that:

$$1_K \le \phi \le 1_G$$

EXERCISE 24. Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $B \in \mathcal{B}(\Omega)$ be such that $\mu(B) < +\infty$. Let $p \in [1, +\infty[$.

- 1. Show that $C_{\mathbf{K}}^c(\Omega) \subseteq L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$.
- 2. Let $\epsilon > 0$. Show the existence of K compact and G open, with:

$$K \subseteq B \subseteq G$$
, $\mu(G \setminus K) \le \epsilon$

- 3. Where did you use the fact that $\mu(B) < +\infty$?
- 4. Show the existence of $\phi \in C_{\mathbf{R}}^c(\Omega)$ with $1_K \leq \phi \leq 1_G$.
- 5. Show that:

$$\int |\phi - 1_B|^p d\mu \le \mu(G \setminus K)$$

6. Conclude that for all $\epsilon > 0$, there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$ such that:

$$\|\phi - 1_B\|_p \le \epsilon$$

- 7. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega)) \cap L^{p}_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), \mu)$. Show that for all $\epsilon > 0$, there exists $\phi \in C^{c}_{\mathbf{C}}(\Omega)$ such that $\|\phi s\|_{p} \leq \epsilon$.
- 8. Prove the following:

Theorem 78 Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space¹. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $p \in [1, +\infty[$, the space $C^c_{\mathbf{K}}(\Omega)$ of \mathbf{K} -valued, continuous maps with compact support, is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$.

EXERCISE 25. Prove the following:

Theorem 79 Let Ω be an open subset of \mathbf{R}^n , where $n \geq 1$. Then, for any locally finite measure μ on $(\Omega, \mathcal{B}(\Omega))$ and $p \in [1, +\infty[$, $C^c_{\mathbf{K}}(\Omega)$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$.

i.e. a metrizable topological space for which there exists a sequence $(V_n)_{n\geq 1}$ of open sets with compact closure, such that $V_n \uparrow \Omega$.