## **9.** $L^p$ -spaces, $p \in [1, +\infty]$

In the following,  $(\Omega, \mathcal{F}, \mu)$  is a measure space.

EXERCISE 1. Let  $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$  be non-negative and measurable maps. Let  $p, q \in \mathbb{R}^+$ , such that 1/p + 1/q = 1.

- 1. Show that  $1 and <math>1 < q < +\infty$ .
- 2. For all  $\alpha \in ]0, +\infty[$ , we define  $\phi^{\alpha} : [0, +\infty] \to [0, +\infty]$  by:

$$\phi^{\alpha}(x) \stackrel{\triangle}{=} \left\{ \begin{array}{ccc} x^{\alpha} & \text{if} & x \in \mathbf{R}^{+} \\ +\infty & \text{if} & x = +\infty \end{array} \right.$$

Show that  $\phi^{\alpha}$  is a continuous map.

- 3. Define  $A = (\int f^p d\mu)^{1/p}$ ,  $B = (\int g^q d\mu)^{1/q}$  and  $C = \int f g d\mu$ . Explain why A, B and C are well defined elements of  $[0, +\infty]$ .
- 4. Show that if A = 0 or B = 0 then C < AB.
- 5. Show that if  $A = +\infty$  or  $B = +\infty$  then  $C \le AB$ .

6. We assume from now on that  $0 < A < +\infty$  and  $0 < B < +\infty$ . Define F = f/A and G = g/B. Show that:

$$\int_{\Omega} F^p d\mu = \int_{\Omega} G^p d\mu = 1$$

7. Let  $a, b \in ]0, +\infty[$ . Show that:

$$\ln(a) + \ln(b) \le \ln\left(\frac{1}{p}a^p + \frac{1}{q}b^q\right)$$

and:

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

Prove this last inequality for all  $a, b \in [0, +\infty]$ .

8. Show that for all  $\omega \in \Omega$ , we have:

$$F(\omega)G(\omega) \le \frac{1}{p}(F(\omega))^p + \frac{1}{q}(G(\omega))^q$$

9. Show that  $C \leq AB$ .

**Theorem 41 (Hölder's inequality)** Let  $(\Omega, \mathcal{F}, \mu)$  be a measure space and  $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$  be two non-negative and measurable maps. Let  $p, q \in \mathbf{R}^+$  be such that 1/p + 1/q = 1. Then:

$$\int_{\Omega} f g d\mu \leq \left(\int_{\Omega} f^p d\mu\right)^{\frac{1}{p}} \left(\int_{\Omega} g^q d\mu\right)^{\frac{1}{q}}$$

Theorem 42 (Cauchy-Schwarz's inequality:first)

Let  $(\Omega, \mathcal{F}, \mu)$  be a measure space and  $f, g : (\Omega, \mathcal{F}) \to [0, +\infty]$  be two non-negative and measurable maps. Then:

$$\int_{\Omega} f g d\mu \leq \left(\int_{\Omega} f^2 d\mu\right)^{\frac{1}{2}} \left(\int_{\Omega} g^2 d\mu\right)^{\frac{1}{2}}$$

EXERCISE 2. Let  $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$  be two non-negative and measurable maps. Let  $p \in ]1, +\infty[$ . Define  $A = (\int f^p d\mu)^{1/p}$  and

$$B = (\int g^p d\mu)^{1/p}$$
 and  $C = (\int (f+g)^p d\mu)^{1/p}$ .

- 1. Explain why A, B and C are well defined elements of  $[0, +\infty]$ .
- 2. Show that for all  $a, b \in ]0, +\infty[$ , we have:

$$(a+b)^p \le 2^{p-1}(a^p + b^p)$$

Prove this inequality for all  $a, b \in [0, +\infty]$ .

- 3. Show that if  $A = +\infty$  or  $B = +\infty$  or C = 0 then  $C \le A + B$ .
- 4. Show that if  $A < +\infty$  and  $B < +\infty$  then  $C < +\infty$ .
- 5. We assume from now that  $A, B \in [0, +\infty[$  and  $C \in ]0, +\infty[$ . Show the existence of some  $q \in \mathbb{R}^+$  such that 1/p + 1/q = 1.
- 6. Show that for all  $a, b \in [0, +\infty]$ , we have:

$$(a+b)^p = (a+b).(a+b)^{p-1}$$

7. Show that:

$$\int_{\Omega} f \cdot (f+g)^{p-1} d\mu \leq A C^{\frac{p}{q}}$$
$$\int_{\Omega} g \cdot (f+g)^{p-1} d\mu \leq B C^{\frac{p}{q}}$$

8. Show that:

$$\int_{\Omega} (f+g)^p d\mu \le C^{\frac{p}{q}} (A+B)$$

- 9. Show that  $C \leq A + B$ .
- 10. Show that the inequality still holds if we assume that p=1.

Theorem 43 (Minkowski's inequality) Let  $(\Omega, \mathcal{F}, \mu)$  be a measure space and  $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$  be two non-negative and measurable maps. Let  $p \in [1, +\infty[$ . Then:

$$\left(\int_{\Omega} (f+g)^p d\mu\right)^{\frac{1}{p}} \leq \left(\int_{\Omega} f^p d\mu\right)^{\frac{1}{p}} + \left(\int_{\Omega} g^p d\mu\right)^{\frac{1}{p}}$$

**Definition 73** The  $L^p$ -spaces,  $p \in [1, +\infty[$ , on  $(\Omega, \mathcal{F}, \mu)$ , are:

$$L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) \stackrel{\triangle}{=} \left\{ f : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R})) \ measurable, \int_{\Omega} |f|^{p} d\mu < +\infty \right\}$$

$$L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) \stackrel{\triangle}{=} \left\{ f : (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C})) \ measurable, \int_{\Omega} |f|^{p} d\mu < +\infty \right\}$$

For all  $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , we put:

$$||f||_p \stackrel{\triangle}{=} \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}$$

EXERCISE 3. Let  $p \in [1, +\infty[$ . Let  $f, g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ .

- 1. Show that  $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) = \{ f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) , f(\Omega) \subseteq \mathbf{R} \}.$
- 2. Show that  $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$  is closed under **R**-linear combinations.
- 3. Show that  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  is closed under **C**-linear combinations.
- 4. Show that  $||f + g||_p \le ||f||_p + ||g||_p$ .
- 5. Show that  $||f||_p = 0 \Leftrightarrow f = 0 \mu$ -a.s.
- 6. Show that for all  $\alpha \in \mathbb{C}$ ,  $\|\alpha f\|_p = |\alpha| \cdot \|f\|_p$ .
- 7. Explain why  $(f,g) \to ||f-g||_p$  is not a metric on  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$

**Definition 74** For all  $f:(\Omega,\mathcal{F})\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$  measurable, Let:

$$||f||_{\infty} \stackrel{\triangle}{=} \inf\{M \in \mathbf{R}^+, |f| \le M \ \mu\text{-}a.s.\}$$

The  $L^{\infty}$ -spaces on a measure space  $(\Omega, \mathcal{F}, \mu)$  are:

$$L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu) \stackrel{\triangle}{=} \{ f : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R})) \text{ measurable}, ||f||_{\infty} < +\infty \}$$
$$L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) \stackrel{\triangle}{=} \{ f : (\Omega, \mathcal{F}) \to (\mathbf{C}, \mathcal{B}(\mathbf{C})) \text{ measurable}, ||f||_{\infty} < +\infty \}$$

EXERCISE 4. Let  $f, g \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ .

- 1. Show that  $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu) = \{ f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) , f(\Omega) \subseteq \mathbf{R} \}.$
- 2. Show that  $|f| \leq ||f||_{\infty} \mu$ -a.s.
- 3. Show that  $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$ .
- 4. Show that  $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$  is closed under **R**-linear combinations.
- 5. Show that  $L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  is closed under **C**-linear combinations.
- 6. Show that  $||f||_{\infty} = 0 \Leftrightarrow f = 0 \mu$ -a.s..
- 7. Show that for all  $\alpha \in \mathbb{C}$ ,  $\|\alpha f\|_{\infty} = |\alpha| \cdot \|f\|_{\infty}$ .

8. Explain why  $(f,g) \to ||f-g||_{\infty}$  is not a metric on  $L^{\infty}_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$ 

**Definition 75** Let  $p \in [1, +\infty]$ . Let  $\mathbf{K} = \mathbf{R}$  or  $\mathbf{C}$ . For all  $\epsilon > 0$  and  $f \in L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ , we define the so-called **open ball** in  $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ :

$$B(f,\epsilon) \stackrel{\triangle}{=} \{g : g \in L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu), ||f - g||_p < \epsilon \}$$

We call usual topology in  $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ , the set  $\mathcal{T}$  defined by:

$$\mathcal{T} \stackrel{\triangle}{=} \{ U : U \subseteq L_{\mathbf{K}}^p(\Omega, \mathcal{F}, \mu), \forall f \in U, \exists \epsilon > 0, B(f, \epsilon) \subseteq U \}$$

Note that if  $(f,g) \to ||f-g||_p$  was a metric, the usual topology in  $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ , would be nothing but the *metric* topology.

EXERCISE 5. Let  $p \in [1, +\infty]$ . Suppose there exists  $N \in \mathcal{F}$  with  $\mu(N) = 0$  and  $N \neq \emptyset$ . Put  $f = 1_N$  and g = 0

1. Show that  $f, g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  and  $f \neq g$ .

- 2. Show that any open set containing f also contains g.
- 3. Show that  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  and  $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$  are not Hausdorff.

EXERCISE 6. Show that the usual topology on  $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$  is induced by the usual topology on  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , where  $p \in [1, +\infty]$ .

**Definition 76** Let  $(E, \mathcal{T})$  be a topological space. A sequence  $(x_n)_{n\geq 1}$  in E is said to **converge** to  $x \in E$ , and we write  $x_n \xrightarrow{\mathcal{T}} x$ , if and only if, for all  $U \in \mathcal{T}$  such that  $x \in U$ , there exists  $n_0 \geq 1$  such that:

$$n \ge n_0 \implies x_n \in U$$

When  $E = L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  or  $E = L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ , we write  $x_n \stackrel{L^p}{\to} x$ .

EXERCISE 7. Let  $(E, \mathcal{T})$  be a topological space and  $E' \subseteq E$ . Let  $\mathcal{T}' = \mathcal{T}_{|E'|}$  be the induced topology on E'. Show that if  $(x_n)_{n\geq 1}$  is a sequence in E' and  $x \in E'$ , then  $x_n \stackrel{\mathcal{T}}{\to} x$  is equivalent to  $x_n \stackrel{\mathcal{T}'}{\to} x$ .

EXERCISE 8. Let  $f, g, (f_n)_{n\geq 1}$  be in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  and  $p \in [1, +\infty]$ .

- 1. Recall what the notation  $f_n \to f$  means.
- 2. Show that  $f_n \stackrel{L^p}{\to} f$  is equivalent to  $||f_n f||_p \to 0$ .
- 3. Show that if  $f_n \stackrel{L^p}{\to} f$  and  $f_n \stackrel{L^p}{\to} g$  then  $f = g \mu$ -a.s.

EXERCISE 9. Let  $p \in [1, +\infty]$ . Suppose there exists some  $N \in \mathcal{F}$  such that  $\mu(N) = 0$  and  $N \neq \emptyset$ . Find a sequence  $(f_n)_{n \geq 1}$  in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  and f, g in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ ,  $f \neq g$  such that  $f_n \stackrel{L^p}{\to} f$  and  $f_n \stackrel{L^p}{\to} g$ .

**Definition 77** Let  $(f_n)_{n\geq 1}$  be a sequence in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , where  $(\Omega, \mathcal{F}, \mu)$  is a measure space and  $p \in [1, +\infty]$ . We say that  $(f_n)_{n\geq 1}$  is a **Cauchy sequence**, if and only if, for all  $\epsilon > 0$ , there exists  $n_0 \geq 1$  such that:

$$n, m \ge n_0 \implies ||f_n - f_m||_p \le \epsilon$$

EXERCISE 10. Let  $f, (f_n)_{n\geq 1}$  be in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  and  $p \in [1, +\infty]$ . Show that if  $f_n \stackrel{L^p}{\to} f$ , then  $(f_n)_{n\geq 1}$  is a Cauchy sequence.

EXERCISE 11. Let  $(f_n)_{n\geq 1}$  be Cauchy in  $L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu), p\in [1,+\infty]$ .

1. Show the existence of  $n_1 \ge 1$  such that:

$$n \ge n_1 \implies ||f_n - f_{n_1}||_p \le \frac{1}{2}$$

2. Suppose we have found  $n_1 < n_2 < \ldots < n_k, k \ge 1$ , such that:

$$\forall j \in \{1, \dots, k\} , n \ge n_j \Rightarrow \|f_n - f_{n_j}\|_p \le \frac{1}{2^j}$$

Show the existence of  $n_{k+1}$ ,  $n_k < n_{k+1}$  such that:

$$n \ge n_{k+1} \implies ||f_n - f_{n_{k+1}}||_p \le \frac{1}{2^{k+1}}$$

3. Show that there exists a subsequence  $(f_{n_k})_{k\geq 1}$  of  $(f_n)_{n\geq 1}$  with:

$$\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < +\infty$$

EXERCISE 12. Let  $p \in [1, +\infty]$ , and  $(f_n)_{n \ge 1}$  be in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , with:

$$\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p < +\infty$$

We define:

$$g \stackrel{\triangle}{=} \sum_{n=1}^{+\infty} |f_{n+1} - f_n|$$

- 1. Show that  $g:(\Omega,\mathcal{F})\to [0,+\infty]$  is non-negative and measurable.
- 2. If  $p = +\infty$ , show that  $g \leq \sum_{n=1}^{+\infty} ||f_{n+1} f_n||_{\infty} \mu$ -a.s.

3. If  $p \in [1, +\infty[$ , show that for all  $N \ge 1$ , we have:

$$\left\| \sum_{n=1}^{N} |f_{n+1} - f_n| \right\|_{p} \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_{p}$$

4. If  $p \in [1, +\infty[$ , show that:

$$\left(\int_{\Omega} g^p d\mu\right)^{\frac{1}{p}} \le \sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p$$

- 5. Show that for  $p \in [1, +\infty]$ , we have  $g < +\infty$   $\mu$ -a.s.
- 6. Define  $A = \{g < +\infty\}$ . Show that for all  $\omega \in A$ ,  $(f_n(\omega))_{n \ge 1}$  is a Cauchy sequence in C. We denote  $z(\omega)$  its limit.
- 7. Define  $f:(\Omega,\mathcal{F})\to (\mathbf{C},\mathcal{B}(\mathbf{C}))$ , by:

$$f(\omega) \stackrel{\triangle}{=} \left\{ \begin{array}{ccc} z(\omega) & \text{ if } & \omega \in A \\ 0 & \text{ if } & \omega \not\in A \end{array} \right.$$

Show that f is measurable and  $f_n \to f$   $\mu$ -a.s.

- 8. if  $p = +\infty$ , show that for all  $n \ge 1$ ,  $|f_n| \le |f_1| + g$  and conclude that  $f \in L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ .
- 9. If  $p \in [1, +\infty[$ , show the existence of  $n_0 \ge 1$ , such that:

$$n \ge n_0 \implies \int_{\Omega} |f_n - f_{n_0}|^p d\mu \le 1$$

Deduce from Fatou's lemma that  $f - f_{n_0} \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ .

- 10. Show that for  $p \in [1, +\infty]$ ,  $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ .
- 11. Suppose that  $f_n \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ , for all  $n \geq 1$ . Show the existence of  $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ , such that  $f_n \to f$   $\mu$ -a.s.

EXERCISE 13. Let  $p \in [1, +\infty]$ , and  $(f_n)_{n\geq 1}$  be in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , with:

$$\sum_{n=1}^{+\infty} \|f_{n+1} - f_n\|_p < +\infty$$

- 1. Does there exist  $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that  $f_n \to f$   $\mu$ -a.s.
- 2. Suppose  $p = +\infty$ . Show that for all n < m, we have:

$$|f_{m+1} - f_n| \le \sum_{k=1}^{m} ||f_{k+1} - f_k||_{\infty} \mu$$
-a.s.

3. Suppose  $p = +\infty$ . Show that for all  $n \ge 1$ , we have:

$$||f - f_n||_{\infty} \le \sum_{k=1}^{+\infty} ||f_{k+1} - f_k||_{\infty}$$

4. Suppose  $p \in [1, +\infty[$ . Show that for all n < m, we have:

$$\left( \int_{\Omega} |f_{m+1} - f_n|^p d\mu \right)^{\frac{1}{p}} \le \sum_{k=n}^m ||f_{k+1} - f_k||_p$$

5. Suppose  $p \in [1, +\infty[$ . Show that for all  $n \ge 1$ , we have:

$$||f - f_n||_p \le \sum_{k=1}^{+\infty} ||f_{k+1} - f_k||_p$$

- 6. Show that for  $p \in [1, +\infty]$ , we also have  $f_n \stackrel{L^p}{\to} f$ .
- 7. Suppose conversely that  $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  is such that  $f_n \stackrel{L^p}{\to} g$ . Show that f = g  $\mu$ -a.s.. Conclude that  $f_n \to g$   $\mu$ -a.s..

**Theorem 44** Let  $(\Omega, \mathcal{F}, \mu)$  be a measure space. Let  $p \in [1, +\infty]$ , and  $(f_n)_{n\geq 1}$  be a sequence in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that:

$$\sum_{m=1}^{+\infty} \|f_{m+1} - f_m\|_p < +\infty$$

Then, there exists  $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that  $f_n \to f$   $\mu$ -a.s. Moreover, for all  $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , the convergence  $f_n \to g$   $\mu$ -a.s. and  $f_n \stackrel{L^p}{\to} g$  are equivalent.

EXERCISE 14. Let  $f, (f_n)_{n\geq 1}$  be in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that  $f_n \stackrel{L^p}{\to} f$ , where  $p \in [1, +\infty]$ .

1. Show that there exists a sub-sequence  $(f_{n_k})_{k\geq 1}$  of  $(f_n)_{n\geq 1}$ , with:

$$\sum_{k=1}^{+\infty} \|f_{n_{k+1}} - f_{n_k}\|_p < +\infty$$

- 2. Show that there exists  $g \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that  $f_{n_k} \to g$   $\mu$ -a.s.
- 3. Show that  $f_{n_k} \stackrel{L^p}{\to} g$  and  $g = f \mu$ -a.s.
- 4. Conclude with the following:

**Theorem 45** Let  $(f_n)_{n\geq 1}$  be in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  and  $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that  $f_n \stackrel{L^p}{\to} f$ , where  $p \in [1, +\infty]$ . Then, we can extract a subsequence  $(f_{n_k})_{k\geq 1}$  of  $(f_n)_{n\geq 1}$  such that  $f_{n_k} \to f$   $\mu$ -a.s.

EXERCISE 15. Prove the last theorem for  $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ .

EXERCISE 16. Let  $(f_n)_{n\geq 1}$  be Cauchy in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu), p \in [1, +\infty]$ .

1. Show that there exists a subsequence  $(f_{n_k})_{k\geq 1}$  of  $(f_n)_{n\geq 1}$  and f belonging to  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ , such that  $f_{n_k} \stackrel{L^p}{\longrightarrow} f$ .

2. Using the fact that  $(f_n)_{n\geq 1}$  is Cauchy, show that  $f_n \stackrel{L^p}{\to} f$ .

**Theorem 46** Let  $p \in [1, +\infty]$ . Let  $(f_n)_{n\geq 1}$  be a Cauchy sequence in  $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ . Then, there exists  $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$  such that  $f_n \stackrel{L^p}{\to} f$ .

EXERCISE 17. Prove the last theorem for  $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ .