3. Stieltjes-Lebesgue Measure

Definition 12 Let $A \subseteq \mathcal{P}(\Omega)$ and $\mu : A \to [0, +\infty]$ be a map. We say that μ is **finitely additive** if and only if, given $n \ge 1$:

$$A \in \mathcal{A}, A_i \in \mathcal{A}, A = \biguplus_{i=1}^n A_i \Rightarrow \mu(A) = \sum_{i=1}^n \mu(A_i)$$

We say that μ is **finitely sub-additive** if and only if, given $n \ge 1$:

$$A \in \mathcal{A}, A_i \in \mathcal{A}, A \subseteq \bigcup_{i=1}^n A_i \Rightarrow \mu(A) \le \sum_{i=1}^n \mu(A_i)$$

EXERCISE 1. Let $S \stackrel{\triangle}{=} \{ [a,b] , a,b \in \mathbf{R} \}$ be the set of all intervals [a,b], defined as $[a,b] = \{ x \in \mathbf{R}, a < x \leq b \}$.

- 1. Show that $[a, b] \cap [c, d] = [a \lor c, b \land d]$
- 2. Show that $]a,b]\backslash]c,d]=]a,b\wedge c]\cup]a\vee d,b]$

- 3. Show that $c \leq d \implies b \wedge c \leq a \vee d$.
- 4. Show that S is a semi-ring on \mathbb{R} .

finitely additive. Show that μ can be extended to a finitely additive map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$, with $\bar{\mu}_{|\mathcal{S}} = \mu$.

EXERCISE 2. Suppose S is a semi-ring in Ω and $\mu: S \to [0, +\infty]$ is

EXERCISE 3. Everything being as before, Let $A \in \mathcal{R}(\mathcal{S})$, $A_i \in \mathcal{R}(\mathcal{S})$, $A \subseteq \bigcup_{i=1}^n A_i$ where $n \geq 1$. Define $B_1 = A_1 \cap A$ and for $i = 1, \ldots, n-1$:

$$B_{i+1} \stackrel{\triangle}{=} (A_{i+1} \cap A) \setminus ((A_1 \cap A) \cup \ldots \cup (A_i \cap A))$$

- 1. Show that B_1, \ldots, B_n are pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$ such that $A = \bigoplus_{i=1}^n B_i$.
- 2. Show that for all i = 1, ..., n, we have $\bar{\mu}(B_i) \leq \bar{\mu}(A_i)$.
- 3. Show that $\bar{\mu}$ is finitely sub-additive.

4. Show that μ is finitely sub-additive.

EXERCISE 4. Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Let \mathcal{S} be the semi-ring on \mathbf{R} , $\mathcal{S} = \{]a,b]$, $a,b \in \mathbf{R}\}$. Define the map $\mu: \mathcal{S} \to [0,+\infty]$ by $\mu(\emptyset) = 0$, and:

$$\forall a \le b \ , \ \mu(]a,b]) \stackrel{\triangle}{=} F(b) - F(a) \tag{1}$$

Let a < b and $a_i < b_i$ for i = 1, ..., n and $n \ge 1$, with :

$$]a,b] = \biguplus_{i=1}^{n}]a_i,b_i]$$

- 1. Show that there is $i_1 \in \{1, ..., n\}$ such that $a_{i_1} = a$.
- 2. Show that $]b_{i_1}, b] = \bigcup_{i \in \{1, ..., n\} \setminus \{i_1\}}]a_i, b_i]$
- 3. Show the existence of a permutation (i_1, \ldots, i_n) of $\{1, \ldots, n\}$ such that $a = a_{i_1} < b_{i_1} = a_{i_2} < \ldots < b_{i_n} = b$.

4. Show that μ is finitely additive and finitely sub-additive.

EXERCISE 5. μ being defined as before, suppose a < b and $a_n < b_n$ for $n \ge 1$ with:

$$]a,b] = \biguplus_{n=1}^{+\infty}]a_n,b_n]$$

Given $N \geq 1$, let (i_1, \ldots, i_N) be a permutation of $\{1, \ldots, N\}$ with:

$$a \le a_{i_1} < b_{i_1} \le a_{i_2} < \ldots < b_{i_N} \le b$$

- 1. Show that $\sum_{k=1}^{N} F(b_{i_k}) F(a_{i_k}) \leq F(b) F(a)$.
- 2. Show that $\sum_{n=1}^{+\infty} \mu(|a_n, b_n|) \le \mu(|a, b|)$
- 3. Given $\epsilon > 0$, show that there is $\eta \in]0, b-a[$ such that:

$$0 \le F(a+\eta) - F(a) \le \epsilon$$

4. For $n \ge 1$, show that there is $\eta_n > 0$ such that:

$$0 \le F(b_n + \eta_n) - F(b_n) \le \frac{\epsilon}{2^n}$$

- 5. Show that $[a+\eta,b] \subseteq \bigcup_{n=1}^{+\infty} [a_n,b_n+\eta_n]$.
- 6. Explain why there exist $p \ge 1$ and integers n_1, \ldots, n_p such that:

$$]a+\eta,b] \subseteq \cup_{k=1}^p]a_{n_k},b_{n_k}+\eta_{n_k}]$$

- 7. Show that $F(b) F(a) \le 2\epsilon + \sum_{n=1}^{+\infty} F(b_n) F(a_n)$
- 8. Show that $\mu: \mathcal{S} \to [0, +\infty]$ is a measure.

Definition 13 A **topology** on Ω is a subset \mathcal{T} of the power set $\mathcal{P}(\Omega)$, with the following properties:

- (i) $\Omega, \emptyset \in \mathcal{T}$
- (ii) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$
- (iii) $A_i \in \mathcal{T}, \forall i \in I \Rightarrow \bigcup_{i \in I} A_i \in \mathcal{T}$

Property (iii) of definition (13) can be translated as: for any family $(A_i)_{i\in I}$ of elements of \mathcal{T} , the union $\bigcup_{i\in I} A_i$ is still an element of \mathcal{T} . Hence, a topology on Ω , is a set of subsets of Ω containing Ω and the empty set, which is closed under finite intersection and arbitrary union.

Definition 14 A **topological space** is an ordered pair (Ω, \mathcal{T}) , where Ω is a set and \mathcal{T} is a topology on Ω .

Definition 15 Let (Ω, \mathcal{T}) be a topological space. We say that $A \subseteq \Omega$ is an **open set** in Ω , if and only if it is an element of the topology \mathcal{T} . We say that $A \subseteq \Omega$ is a **closed set** in Ω , if and only if its complement A^c is an open set in Ω .

Definition 16 Let (Ω, \mathcal{T}) be a topological space. We define the **Borel** σ -algebra on Ω , denoted $\mathcal{B}(\Omega)$, as the σ -algebra on Ω , generated by the topology \mathcal{T} . In other words, $\mathcal{B}(\Omega) = \sigma(\mathcal{T})$

Definition 17 We define the usual topology on \mathbb{R} , denoted $\mathcal{T}_{\mathbb{R}}$, as the set of all $U \subseteq \mathbb{R}$ such that:

$$\forall x \in U , \exists \epsilon > 0 ,]x - \epsilon, x + \epsilon \subseteq U$$

EXERCISE 6.Show that $\mathcal{T}_{\mathbf{R}}$ is indeed a topology on \mathbf{R} .

EXERCISE 7. Consider the semi-ring $\mathcal{S} \stackrel{\triangle}{=} \{ [a,b] \ , \ a,b \in \mathbf{R} \}$. Let $\mathcal{T}_{\mathbf{R}}$ be the usual topology on \mathbf{R} , and $\mathcal{B}(\mathbf{R})$ be the Borel σ -algebra on \mathbf{R} .

1. Let
$$a \le b$$
. Show that $]a, b] = \bigcap_{n=1}^{+\infty}]a, b + 1/n[$.

- 2. Show that $\sigma(S) \subseteq \mathcal{B}(\mathbf{R})$.
- 3. Let U be an open subset of \mathbf{R} . Show that for all $x \in U$, there exist $a_x, b_x \in \mathbf{Q}$ such that $x \in]a_x, b_x] \subseteq U$.
- 4. Show that $U = \bigcup_{x \in U} [a_x, b_x]$.
- 5. Show that the set $I \stackrel{\triangle}{=} \{ [a_x, b_x], x \in U \}$ is countable.
- 6. Show that U can be written $U = \bigcup_{i \in I} A_i$ with $A_i \in \mathcal{S}$.
- 7. Show that $\sigma(S) = \mathcal{B}(\mathbf{R})$.

Theorem 6 Let S be the semi-ring $S = \{[a,b], a,b \in \mathbf{R}\}$. Then, the Borel σ -algebra $\mathcal{B}(\mathbf{R})$ on \mathbf{R} , is generated by S, i.e. $\mathcal{B}(\mathbf{R}) = \sigma(S)$.

Definition 18 A measurable space is an ordered pair (Ω, \mathcal{F}) where Ω is a set and \mathcal{F} is a σ -algebra on Ω .

Definition 19 A measure space is a triple $(\Omega, \mathcal{F}, \mu)$ where (Ω, \mathcal{F}) is a measurable space and $\mu : \mathcal{F} \to [0, +\infty]$ is a measure on \mathcal{F} .

EXERCISE 8.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $(A_n)_{n\geq 1}$ be a sequence of elements of \mathcal{F} such that $A_n \subseteq A_{n+1}$ for all $n \geq 1$, and let $A = \bigcup_{n=1}^{+\infty} A_n$ (we write $A_n \uparrow A$). Define $B_1 = A_1$ and for all $n \geq 1$, $B_{n+1} = A_{n+1} \setminus A_n$.

- 1. Show that (B_n) is a sequence of pairwise disjoint elements of \mathcal{F} such that $A = \bigoplus_{n=1}^{+\infty} B_n$.
- 2. Given $N \ge 1$ show that $A_N = \bigcup_{n=1}^N B_n$.
- 3. Show that $\mu(A_N) \to \mu(A)$ as $N \to +\infty$
- 4. Show that $\mu(A_n) \leq \mu(A_{n+1})$ for all $n \geq 1$.

Theorem 7 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $(A_n)_{n\geq 1}$ is a sequence of elements of \mathcal{F} , such that $A_n \uparrow A$, we have $\mu(A_n) \uparrow \mu(A)^1$.

EXERCISE 9.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $(A_n)_{n\geq 1}$ be a sequence of elements of \mathcal{F} such that $A_{n+1} \subseteq A_n$ for all $n \geq 1$, and let $A = \bigcap_{n=1}^{+\infty} A_n$ (we write $A_n \downarrow A$). We assume that $\mu(A_1) < +\infty$.

- 1. Define $B_n \stackrel{\triangle}{=} A_1 \setminus A_n$ and show that $B_n \in \mathcal{F}, B_n \uparrow A_1 \setminus A$.
- 2. Show that $\mu(B_n) \uparrow \mu(A_1 \setminus A)$
- 3. Show that $\mu(A_n) = \mu(A_1) \mu(A_1 \setminus A_n)$
- 4. Show that $\mu(A) = \mu(A_1) \mu(A_1 \setminus A)$
- 5. Why is $\mu(A_1) < +\infty$ important in deriving those equalities.
- 6. Show that $\mu(A_n) \to \mu(A)$ as $n \to +\infty$

¹i.e. the sequence $(\mu(A_n))_{n\geq 1}$ is non-decreasing and converges to $\mu(A)$.

7. Show that $\mu(A_{n+1}) \leq \mu(A_n)$ for all $n \geq 1$.

Theorem 8 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Then if $(A_n)_{n\geq 1}$ is a sequence of elements of \mathcal{F} , such that $A_n \downarrow A$ and $\mu(A_1) < +\infty$, we have $\mu(A_n) \downarrow \mu(A)$.

EXERCISE 10.Take $\Omega = \mathbf{R}$ and $\mathcal{F} = \mathcal{B}(\mathbf{R})$. Suppose μ is a measure on $\mathcal{B}(\mathbf{R})$ such that $\mu(|a,b|) = b - a$, for a < b. Take $A_n = |n, +\infty[$.

- 1. Show that $A_n \downarrow \emptyset$.
- 2. Show that $\mu(A_n) = +\infty$, for all n > 1.
- 3. Conclude that $\mu(A_n) \downarrow \mu(\emptyset)$ fails to be true.

EXERCISE 11. Let $F : \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Show the existence of a measure $\mu : \mathcal{B}(\mathbf{R}) \to [0, +\infty]$ such that:

$$\forall a, b \in \mathbf{R} , a \le b , \mu(|a,b|) = F(b) - F(a)$$
 (2)

EXERCISE 12.Let μ_1 , μ_2 be two measures on $\mathcal{B}(\mathbf{R})$ with property (2). For $n \geq 1$, we define:

$$\mathcal{D}_n \stackrel{\triangle}{=} \{ B \in \mathcal{B}(\mathbf{R}) , \ \mu_1(B \cap] - n, n]) = \mu_2(B \cap] - n, n]) \}$$

- 1. Show that \mathcal{D}_n is a Dynkin system on **R**.
- 2. Explain why $\mu_1(]-n,n])<+\infty$ and $\mu_2(]-n,n])<+\infty$ is needed when proving 1.
- 3. Show that $\mathcal{S} \stackrel{\triangle}{=} \{ [a, b], a, b \in \mathbf{R} \} \subseteq \mathcal{D}_n$.
- 4. Show that $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{D}_n$.
- 5. Show that $\mu_1 = \mu_2$.
- 6. Prove the following theorem.

Theorem 9 Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. There exists a unique measure $\mu: \mathcal{B}(\mathbf{R}) \to [0, +\infty]$ such that:

$$\forall a,b \in \mathbf{R} \ , \ a \le b \ , \ \mu(]a,b]) = F(b) - F(a)$$

Definition 20 Let $F : \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. We call **Stieltjes measure** on \mathbf{R} associated with F, the unique measure on $\mathcal{B}(\mathbf{R})$, denoted dF, such that:

$$\forall a, b \in \mathbf{R} , a \le b , dF(]a, b]) = F(b) - F(a)$$

Definition 21 We call **Lebesgue measure** on \mathbb{R} , the unique measure on $\mathcal{B}(\mathbb{R})$, denoted dx, such that:

$$\forall a, b \in \mathbf{R} , a \le b , dx(]a, b]) = b - a$$

EXERCISE 13. Let $F : \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Let $x_0 \in \mathbf{R}$.

1. Show that the limit $F(x_0-) = \lim_{x < x_0, x \to x_0} F(x)$ exists and is an element of **R**.

- 2. Show that $\{x_0\} = \bigcap_{n=1}^{+\infty} |x_0 1/n, x_0|$.
- 3. Show that $\{x_0\} \in \mathcal{B}(\mathbf{R})$
- 4. Show that $dF({x_0}) = F(x_0) F(x_0)$

EXERCISE 14.Let $F: \mathbf{R} \to \mathbf{R}$ be a right-continuous, non-decreasing map. Let $a \leq b$.

- 1. Show that $[a,b] \in \mathcal{B}(\mathbf{R})$ and dF([a,b]) = F(b) F(a)
- 2. Show that $[a,b] \in \mathcal{B}(\mathbf{R})$ and dF([a,b]) = F(b) F(a-)
- 3. Show that $]a,b[\in \mathcal{B}(\mathbf{R}) \text{ and } dF(]a,b[)=F(b-)-F(a)$
- 4. Show that $[a, b[\in \mathcal{B}(\mathbf{R}) \text{ and } dF([a, b[) = F(b-) F(a-)$

EXERCISE 15. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega' \subseteq \Omega$. Define:

$$\mathcal{A}_{|\Omega'} \stackrel{\triangle}{=} \{ A \cap \Omega' \ , \ A \in \mathcal{A} \}$$

- 1. Show that if \mathcal{A} is a topology on Ω , $\mathcal{A}_{|\Omega'}$ is a topology on Ω' .
- 2. Show that if \mathcal{A} is a σ -algebra on Ω , $\mathcal{A}_{|\Omega'}$ is a σ -algebra on Ω' .

Definition 22 Let Ω be a set, and $\Omega' \subseteq \Omega$. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. We call **trace** of \mathcal{A} on Ω' , the subset $\mathcal{A}_{|\Omega'}$ of the power set $\mathcal{P}(\Omega')$ defined by:

$$\mathcal{A}_{|\Omega'} \stackrel{\triangle}{=} \{A \cap \Omega', A \in \mathcal{A}\}$$

Definition 23 Let (Ω, \mathcal{T}) be a topological space and $\Omega' \subseteq \Omega$. We call **induced topology** on Ω' , denoted $\mathcal{T}_{|\Omega'}$, the topology on Ω' defined by:

$$\mathcal{T}_{|\Omega'} \stackrel{\triangle}{=} \{ A \cap \Omega' , A \in \mathcal{T} \}$$

In other words, the induced topology $\mathcal{T}_{|\Omega'}$ is the trace of \mathcal{T} on Ω' .

EXERCISE 16.Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Let $\Omega' \subseteq \Omega$, and $\mathcal{A}_{|\Omega'|}$ be the trace of \mathcal{A} on Ω' . Define:

$$\Gamma \stackrel{\triangle}{=} \{ A \in \sigma(\mathcal{A}) , A \cap \Omega' \in \sigma(\mathcal{A}_{|\Omega'}) \}$$

where $\sigma(\mathcal{A}_{|\Omega'})$ refers to the σ -algebra generated by $\mathcal{A}_{|\Omega'}$ on Ω' .

- 1. Explain why the notation $\sigma(\mathcal{A}_{|\Omega'})$ by itself is ambiguous.
- 2. Show that $A \subseteq \Gamma$.
- 3. Show that Γ is a σ -algebra on Ω .
- 4. Show that $\sigma(\mathcal{A}_{|\Omega'}) = \sigma(\mathcal{A})_{|\Omega'}$

Theorem 10 Let $\Omega' \subseteq \Omega$ and A be a subset of the power set $\mathcal{P}(\Omega)$. Then, the trace on Ω' of the σ -algebra $\sigma(A)$ generated by A, is equal to the σ -algebra on Ω' generated by the trace of A on Ω' . In other words, $\sigma(A)_{|\Omega'} = \sigma(A_{|\Omega'})$.

EXERCISE 17.Let (Ω, \mathcal{T}) be a topological space and $\Omega' \subseteq \Omega$ with its induced topology $\mathcal{T}_{|\Omega'}$.

- 1. Show that $\mathcal{B}(\Omega)|_{\Omega'} = \mathcal{B}(\Omega')$.
- 2. Show that if $\Omega' \in \mathcal{B}(\Omega)$ then $\mathcal{B}(\Omega') \subseteq \mathcal{B}(\Omega)$.
- 3. Show that $\mathcal{B}(\mathbf{R}^+) = \{A \cap \mathbf{R}^+, A \in \mathcal{B}(\mathbf{R})\}.$
- 4. Show that $\mathcal{B}(\mathbf{R}^+) \subseteq \mathcal{B}(\mathbf{R})$.

EXERCISE 18.Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega' \subseteq \Omega$

- 1. Show that $(\Omega', \mathcal{F}_{|\Omega'})$ is a measurable space.
- 2. If $\Omega' \in \mathcal{F}$, show that $\mathcal{F}_{|\Omega'} \subseteq \mathcal{F}$.
- 3. If $\Omega' \in \mathcal{F}$, show that $(\Omega', \mathcal{F}_{|\Omega'}, \mu_{|\Omega'})$ is a measure space, where $\mu_{|\Omega'}$ is defined as $\mu_{|\Omega'} = \mu_{|(\mathcal{F}_{|\Omega'})}$.

EXERCISE 19. Let $F : \mathbf{R}^+ \to \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. Define:

$$\bar{F}(x) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} 0 & \text{if} & x < 0 \\ F(x) & \text{if} & x > 0 \end{array} \right.$$

- 1. Show that $\bar{F}: \mathbf{R} \to \mathbf{R}$ is right-continuous and non-decreasing.
- 2. Show that $\mu : \mathcal{B}(\mathbf{R}^+) \to [0, +\infty]$ defined by $\mu = d\bar{F}_{|\mathcal{B}(\mathbf{R}^+)}$, is a measure on $\mathcal{B}(\mathbf{R}^+)$ with the properties:

(i)
$$\mu(\{0\}) = F(0)$$

(ii) $\forall 0 \le a \le b , \ \mu([a, b]) = F(b) - F(a)$

Exercise 20. Define: $C = \{\{0\}\} \cup \{[a, b], 0 \le a \le b\}$

- 1. Show that $\mathcal{C} \subseteq \mathcal{B}(\mathbf{R}^+)$
- 2. Let U be open in \mathbb{R}^+ . Show that U is of the form:

$$U = \bigcup_{i \in I} (\mathbf{R}^+ \cap]a_i, b_i])$$

where I is a countable set and $a_i, b_i \in \mathbf{R}$ with $a_i \leq b_i$.

- 3. For all $i \in I$, show that $\mathbf{R}^+ \cap [a_i, b_i] \in \sigma(\mathcal{C})$.
- 4. Show that $\sigma(\mathcal{C}) = \mathcal{B}(\mathbf{R}^+)$

EXERCISE 21.Let μ_1 and μ_2 be two measures on $\mathcal{B}(\mathbf{R}^+)$ with:

(i)
$$\mu_1(\{0\}) = \mu_2(\{0\}) = F(0)$$

(ii)
$$\mu_1(]a,b]) = \mu_2(]a,b]) = F(b) - F(a)$$

for all $0 \le a \le b$. For $n \ge 1$, we define:

$$\mathcal{D}_n = \{ B \in \mathcal{B}(\mathbf{R}^+) , \ \mu_1(B \cap [0, n]) = \mu_2(B \cap [0, n]) \}$$

- 1. Show that \mathcal{D}_n is a Dynkin system on \mathbf{R}^+ with $\mathcal{C} \subseteq \mathcal{D}_n$, where the set \mathcal{C} is defined as in exercise (20).
- 2. Explain why $\mu_1([0,n]) < +\infty$ and $\mu_2([0,n]) < +\infty$ is important when proving 1.
- 3. Show that $\mu_1 = \mu_2$.
- 4. Prove the following theorem.

Theorem 11 Let $F: \mathbf{R}^+ \to \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. There exists a unique $\mu: \mathcal{B}(\mathbf{R}^+) \to [0, +\infty]$ measure on $\mathcal{B}(\mathbf{R}^+)$ such that:

(i)
$$\mu(\{0\}) = F(0)$$

(ii) $\forall 0 \le a \le b, \ \mu([a,b]) = F(b) - F(a)$

Definition 24 Let $F: \mathbf{R}^+ \to \mathbf{R}$ be a right-continuous, non-decreasing map with $F(0) \geq 0$. We call **Stieltjes measure** on \mathbf{R}^+ associated with F, the unique measure on $\mathcal{B}(\mathbf{R}^+)$, denoted dF, such that:

(i)
$$dF(\{0\}) = F(0)$$

(ii) $\forall 0 \le a \le b$, $dF([a, b]) = F(b) - F(a)$